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Experimental constraints on the second clock effect
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We set observational constraints on the second clock effect, predicted by Weyl unified field theory, by 
investigating recent data on the dilated lifetime of muons accelerated by a magnetic field. These data 
were obtained in an experiment carried out in CERN aiming at measuring the anomalous magnetic 
moment of the muon. In our analysis we employ the definition of invariant proper time proposed by 
V. Perlick, which seems to be the appropriate notion to be worked out in the context of Weyl space–
time.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since the advent of the special and general relativity the quest 
for the determination of the true geometric nature of space–time 
has long been a debated matter of research among theoretical 
physicists. The treatment of space–time as a differential manifold 
endowed with a Riemannian metric tensor, which obeys Einstein’s 
field equations, still remains the paradigm of gravity theory. How-
ever, in recent years a great deal of effort has gone into the inves-
tigation of the so-called modified gravity theories, mainly motivated 
by attempts at explaining current data coming from observational 
cosmology as well as the important issues of dark matter and dark 
energy [1]. In this letter, however, we revisit some ideas developed 
by H. Weyl in his unified theory, one of the first modified gravity 
theories, which appeared soon after the birth of general relativity 
[2]. Weyl’s theory encountered a severe objection put forward by 
Einstein, who believed that it would lead to a physical effect not 
yet observed (the so-called second clock effect). Curiously, as far as 
we know, neither theoretical calculations nor any experimental at-
tempt at measuring the magnitude of the predicted effect has been 
carried out up to now.

Let us now briefly recall some basic tenets of the geometry con-
ceived by H. Weyl which underlies his unified theory. Perhaps the 
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(C. Romero).

main feature of this geometry is the fact that a vector can have 
its length changed when parallel transported along a curve, which 
is a consequence of the presence of a 1-form field in the com-
patibility condition between the metric and the affine connection. 
The existence of a group of transformations that leaves this new 
compatibility condition invariant is another interesting fact noticed 
by Weyl, which ultimately led to the discovery of the gauge the-
ories [3]. As is well known, Weyl’s idea was to give a geometric 
character to the electromagnetic potential by identifying it with a 
purely geometric 1-form field. He then proposed an invariant ac-
tion that contained both the gravitational and the electromagnetic 
fields. However, Einstein pointed out that the non-integrability of 
length, a characteristic of Weyl space–time, would imply that the 
rate at which a clock measures time, i.e. its clock rate, would de-
pend on the past history of the clock. As a consequence, spectral 
lines with sharp frequencies would not appear [2]. This came to be 
known in the literature as the second clock effect [4]. (The first clock 
effect refers to the well-known effect corresponding to the “twin 
paradox” predicted by special and general relativity theories.)

Despite the fact that this essentially qualitative objection has 
led to a rejection of Weyl theory as being non-physical, an actual 
measurement of the magnitude of the second-clock effect pre-
dicted by Weyl theory has never been carried out. Moreover, worse 
than that, as far as we know even the concept of proper time 
measured by an ideal clock in Weyl theory has never been dis-
cussed, neither by Einstein nor by Weyl himself. In fact, the usual 
definition of proper time adopted in general relativity as the arc-
length of a curve (the clock hypothesis) cannot be properly carried 
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over to Weyl geometry for the simple reason that this definition 
is not invariant under Weyl transformations (see [5,6] and refer-
ences therein). It turns out, however, that this problem has been 
finally settled by V. Perlick, who proposed a definition of proper 
time which is consistent with Weyl’s principle of invariance [7,8]. 
Perlick’s notion of proper time provides a correction to the arc-
length formula, and reduces to the general relativistic proper time 
when the Weyl 1-form field vanishes. Moreover, it can be used 
to set experimental bounds on the predicted second clock effect. 
Following a renewed interest in Weyl theory, we believe that at-
tempts to detect the possible existence of the second clock effect 
is of interest in its own, and may lead to results of physical rel-
evance whose significance may lie beyond any particular gravity 
theory.

In this letter, we propose to use as our standard clocks unsta-
ble particles by investigating the effect of an external magnetic 
field on their dilated lifetime. Specifically, our aim is to set an 
experimental constraint on the second clock effect by looking at 
the Perlick’s proper time corresponding to the dilated lifetime of 
muons accelerated by this magnetic field.

2. Weyl geometry

As we have mentioned before, the basic idea of Weyl geometry 
is the introduction of a 1-form field σα (called the Weyl field), 
which is used to replace the Riemannian compatibility condition 
between the metric gμν and the connection ∇α by requiring that 
the new condition reads

∇α gμν = σα gμν. (1)

Weyl then found out that by performing the simultaneous trans-
formations

ḡμν = e f gμν, (2a)

σ̄α = σα + ∂μ f , (3)

where f = f (x) is an arbitrary scalar function, the compatibility 
condition (1) is preserved, i.e., we have ∇α ḡμν = σ̄α ḡμν . The dis-
covery of this invariance is generally considered to be the birth 
of modern gauge theories (see [3] and references therein). It turns 
out then that the condition (1) leads to a new kind of curvature, 
given by Fμν = ∂μσν − ∂νσμ , called by Weyl the length curvature, 
which is invariant under (3). These findings led Weyl to identify 
the 1-form σα with the 4-potential Aα of the electromagnetic field 
[2] by writing

σα = λ Aα, (4)

where the constant λ is introduced just for dimensional reasons 
since σα has dimensions of [length]−1 (of course, it is always pos-
sible to choose units such that λ = 1).

The length curvature can be viewed as a measure of the non-
integrability of vector lengths when a vector field is parallel trans-
ported around a loop. For instance, let V μ be the components with 
respect to a coordinate basis of a time-like vector V that is paral-
lel transported around a closed curve γ �→ γ (t) : γ [a, b] ∈ R → M
(with γ (a) = γ (b)). If we denote L2 = gμν V μV ν then it can easily 
be shown that

L(a) = L(b)exp

[
1

2

∮
σμ

dxμ

dt
dt

]
, (5)

where dγ /dt
.= (dxμ/dt)∂μ , L(a) and L(b) denote the initial and 

final length of V , respectively. Surely, L(a) = L(b) if and only if 
there exists a scalar function φ such that σμ = ∂μφ. Clearly, in this 

case, from Stokes’ theorem, Fμν = ∂μσν − ∂νσμ must vanish and 
we end up with a Weyl Integrable space–time (WIST).

We could say that the non-integrability of lengths is in the root 
of the already mentioned Einstein’s objection to Weyl’s theory. In-
deed, Einstein argued that this predicted effect implies that the 
clock rate of atomic clocks should be path dependent. In fact, Ein-
stein’s reasoning is based on two hypotheses:

a) The proper time 	τ measured by a clock traveling along 
a curve γ = γ (t) is given as in general relativity, that is, by the 
(Riemannian) prescription

	τ = 1

c

∫
[g(V , V )]

1
2 dt = 1

c

∫ [
gμν V μV ν

] 1
2 dt, (6)

where V denotes the vector tangent to the clock’s world line and 
c is the speed of light. This assumption is known as the clock hy-
pothesis and assumes that the proper time only depends on the 
instantaneous speed of the clock and on the metric field.

b) The fundamental clock rate of standard clocks is given by the 
(Riemannian) length L = √

g(V , V ) of a certain vector V .
However, it has been argued recently that in order to dis-

cuss the existence of the second clock effect a new notion of 
proper time, consistent with Weyl’s Principle of Gauge Invariance,1

is needed [5]. It happens to be that such a notion exists and was 
recently given by V. Perlick [7].

Let us now briefly recall the notion of proper time proposed 
by V. Perlick. First, let us define a standard clock according to 
the following definition: A time-like curve γ : γ [a, b] ∈ R → M , 
t �→ γ (t), is called a standard clock if Dγ ′

dt is orthogonal to γ ′(t), 
i.e. g(γ ′, Dγ ′

dt ) = 0. We will then say that a time-like curve γ is 
parametrized by proper time if the parametrized curve is a stan-
dard clock. It can be shown that from this definition it follows that 
the proper time elapsed between two events corresponding to the 
parameter values t0 and t in the curve γ is given by

	τ(t) = (7)⎛
⎜⎝ dτ/dt√

gαβ ẋα ẋβ

⎞
⎟⎠

t=t0

t∫
t0

exp

⎛
⎝−1

2

u∫
u0

σρ ẋρds

⎞
⎠[

gμν ẋμ ẋν
]1/2

du,

where the overdot means derivative with respect to the curve’s 
parameter [8]. It has also been shown that Perlick’s time has all 
the properties a good definition of proper time in a Weyl space–
time should have, such as, Weyl-invariance, positive definiteness, 
additivity. In addition to that, in the limit in which the length cur-
vature Fμν goes to zero Perlick’s time reduces to the Riemannian 
or WIST proper time. Recently, it was shown the equivalence be-
tween this definition and the one given in the well-known paper 
by Ehlers, Pirani, and Schild (EPS) [8,9]. The latter was entirely 
based on axiomatic approach which leads to a Weyl structure as 
the most suitable model for space–time.

Another important property of Perlick’s hypothesis (perhaps un-
expected) concerning the proper time of a standard clock is that it 
also predicts the existence of the second clock effect, namely, that 
the clock rate of a local observer depends on its path [8]. More 
precisely, consider two clocks c1 and c2 synchronized at point A
(see Fig. 1), which are transported together until point B , then sep-
arated and transported along two different paths, 
1 and 
2, until 

1 The Principle of Gauge Invariance asserts that all physical quantities must be in-
variant under the gauge transformations. This principle was strictly followed by 
Weyl and guided him when he had to choose an action for his theory. It should 
also be noted here that any invariant scalar of this geometry must necessarily be 
formed by both the metric gμν and the Weyl gauge field σμ .
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