
Physics Letters B 783 (2018) 7–12

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Pion–nucleon sigma term revisited in covariant baryon chiral 
perturbation theory

Xiu-Lei Ren a,b, Xi-Zhe Ling c, Li-Sheng Geng c,d,∗
a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
b Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
c School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191, 
China
d Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2017
Received in revised form 5 April 2018
Accepted 23 May 2018
Available online 21 June 2018
Editor: J.-P. Blaizot

Keywords:
Chiral Lagrangians
Lattice QCD calculations
Protons and neutrons

We study the latest N f = 2 + 1 + 1 and N f = 2 ETMC lattice QCD simulations of the nucleon masses and 
extract the pion–nucleon sigma term utilizing the Feynman–Hellmann theorem in SU(2) baryon chiral 
perturbation theory with the extended-on-mass-shell scheme. We find that the lattice QCD data can be 
described quite well already at the next-to-next-to-leading order. The overall picture remains essentially 
the same at the next-to-next-to-next-to-leading order. Our final result is σπ N = 50.2(1.2)(2.0) MeV, or 
equivalently, f N

u/d = 0.0535(13)(21), where the first uncertainty is statistical and second is theoretical 
originated from chiral truncations, which is in agreement with that determined previously from the N f =
2 + 1 and N f = 2 lattice QCD data and that determined by the Cheng–Dashen theorem. In addition, we 
show that the inclusion of the virtual �(1232) does not change qualitatively our results.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years, the pion–nucleon sigma term has attracted 
much attention, partly because of its role in predicting the cross 
section of certain candidate dark matter particles interacting with 
the nucleons [1]. Historically, a “canonical value” of the pion–
nucleon sigma term σπ N = ml〈N|ūu + d̄d|N〉 ∼ 45 MeV was derived 
in Ref. [2] from the pion–nucleon scattering data. Later, an up-
dated analysis of π N scattering yielded a larger value σπ N = 64(8)

MeV [3]. In the past few years, several phenomenological studies 
of pion–nucleon scattering using chiral perturbation theory (ChPT) 
and/or Roy–Steiner equations, e.g. Refs. [4–8], have derived a σπ N
around 60 MeV. In the meantime, the pion–nucleon sigma term 
has also been extensively studied in lattice quantum chromody-
namics (lattice QCD) by either computing three-point (the direct 
method) [9–13] or two-point correlation functions (the so-called 
spectrum method) [14–25]. Due to the many systematic and sta-
tistical uncertainties inherent in these studies, no consensus has 
been reached on the precise value of the pion–nucleon sigma term, 
although several recent studies seem to prefer a small value∼ 40
MeV [11–13,25]. Apparently, there exists a tension between the 
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pion–nucleon sigma term determined from the phenomenological 
studies and that from the lattice QCD simulations.

As stressed in Ref. [23], two key factors are important in a re-
liable and accurate determination of the pion–nucleon sigma term 
using the lattice nucleon mass data with the spectrum method, 
i.e., lattice QCD simulations with various setups and configurations 
and a proper formulation to parameterize the pion-mass depen-
dence of the nucleon mass. For the later, baryon chiral perturba-
tion theory (BChPT), an effective field theory of low-energy QCD, 
provides a model-independent framework to study the pion-mass 
dependence of the nucleon mass. In the last few years, the Eu-
ropean Twisted Mass Collaboration (ETMC) has performed several 
lattice QCD studies to extract the nucleon mass with the N f = 2
[26,27] and N f = 2 + 1 + 1 [24] twisted mass fermions. Since the 
dynamical strange and charm quarks have minor impact on the 
ETMC nucleon masses, in a recent work, Alexandrou et al. (ETMC) 
performed a combined fit to the 17 sets of the N f = 2 + 1 + 1
nucleon masses and one N f = 2 physical ensemble using SU(2) 
BChPT,1 and predicted a pion–nucleon sigma term 64.9(1.5)(13.2)

MeV [27]. This value is much larger than that obtained from the 

1 In principle, the twisted-mass ChPT [28,29] is more suitable for the analysis of 
the ETMC data.
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direct method with the ensemble at the physical point by the same 
collaboration, σπ N = 37.2(2.6)

(4.7)
(2.9) [12]. However, ones should note 

that the large σπ N of Ref. [27] was obtained in the spectrum 
method using the heavy baryon (HB) chiral perturbation theory, 
which is known to perform sometimes badly in terms of conver-
gence (see, e.g., Ref. [30,31]). Particularly, it was shown in Ref. [27]
that at next-to-next-to-leading order (NNLO) the best fit yields a 
χ2/d.o.f. ≈ 1.6 while only at “next-to-next-to-next-to leading or-
der (N3LO)”,2 a χ2/d.o.f. ≈ 1.1 can be achieved.

Since the determination of the pion–nucleon sigma term via 
the Feynman–Hellmann theorem is sensitive to the extracted pion-
mass dependence of the nucleon mass from the lattice QCD data, 
a better description of the ETMC data is needed. Therefore, it 
is timely and worthy to reanalyze the same lattice QCD data as 
Ref. [27] using covariant baryon chiral perturbation theory with 
the extended-on-mass-shell (EOMS) scheme [32], which has shown 
a number of both formal and practical advantages and has solved 
a number of long-existing puzzles in the one-baryon sector [33]. 
Furthermore, the applications of the EOMS BChPT in the studies 
of the lattice QCD octet baryon masses turn out to be very suc-
cessful as well [20,21,34,35].3 Therefore, in this work, we employ 
the two-flavor covariant BChPT to calculate the nucleon mass up 
to N3LO. It is shown that we can achieve a better description of 
the 18 sets of ETMC data, i.e. χ2/d.o.f. ≤ 1.0, in comparison with 
the study in the HB scheme [27]. With the obtained LECs, we pre-
dict a pion–nucleon sigma term, σπ N = 50.2(1.2)(2.2) MeV, using 
the Feynman–Hellmann theorem.

This paper is organized as follows. In Section 2, we briefly sum-
marize the theoretical ingredients needed to analyze the ETMC 
lattice QCD data. In Section 3, we perform fits to them follow-
ing the strategy of Ref. [27] and predict the pion–nucleon sigma 
term using the Feynman–Hellmann theorem. The so-obtained low-
energy constants (LECs) are then used to calculate the scattering 
length as well as the pion–nucleon sigma term with the Cheng–
Dashen theorem. In Section 4, a short summary is given.

2. Theoretical framework

The nucleon mass has been calculated up to O(p4) both in the 
two-flavor sector [21] and in the three-flavor sector [20] in co-
variant BChPT with the EOMS scheme. To make the present work 
self-consistent, we spell out the nucleon mass up to O(p4), which 
in the isospin symmetric limit reads

mN = m0 − 4c1m2
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where fπ is the pion decay constant in the chiral limit, and g A is 
the axial coupling. There are four LECs, c1, c2, c3, and α. The two 
loop functions, H (3)

N and H (4)
N , are the contributions of the O(p3)

2 One should note that this is not a complete N3LO study in HB ChPT, since the 
contributions from the O(p4) tadpole and mass-insertion loop diagrams were not 
included.

3 It has been extended to heavy flavor sectors in recent years, see, e.g., Refs. [36–
39].

and O(p4) one-loop diagrams with the power-counting breaking 
terms subtracted [20,21]
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which are calculated in the dimensional regularization scheme 
with the renormalization scale μ. Following Ref. [40], we take 
fπ = 0.0871 GeV, g A = 1.267, and μ = 1.0 GeV in our numeri-
cal study, unless otherwise specified.

In principle, the four LECs (ci and α) can be calculated directly 
from QCD. However, because of the nonperturbative nature of QCD 
at low energies, one usually determines their value by perform-
ing a least-square fit to the lattice QCD nucleon masses and/or 
experimental data. It was shown in Refs. [20,22] that finite vol-
ume corrections need to be taken into account, particularly for the 
mπ L < 4 ensembles, in order to describe the lattice QCD data with 
a χ2 ≈ 1.0. In the present case, since some of the ETMC results are 
obtained with mπ L < 4, we take the finite volume corrections into 
account up to O(p4), which read
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with
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where Kn(z) is the modified Bessel function of the second kind, 
and
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with 	n = (nx, ny, nz). The finite volume correction of the one-loop 
diagrams, δH (3)

N and δH (4)
N , are calculated in Refs. [20,42] and read

δH (3)
N = −

1∫
0

dx

[
1

2
m0(2x + 1)δ1/2(M2

N)

−1

4
m0

(
m2

0x3 +M2
N(x + 2)

)
δ3/2(M2

N)

]
, (7)
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