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The solutions of the Einstein equation are a subset of the solutions of conformal (Weyl) gravity, but the 
difference from the action means that the black hole thermodynamics of the two gravity theories would 
be different. In this paper we explore the thermodynamic phase structure for the conformal gravity in 
the four-dimensional AdS space–time. Special emphasis is put on the dependence on the parameter c1
in the linear-r term in the metric. The thermodynamic phase structure of the conformal gravity is very 
rich, including two branches of equations of states, negative thermodynamic volume, zeroth-order phase 
transition, and Hawking–Page like phase transition.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Gravity theories containing higher-order derivative terms in the 
action are of fundamental interest for various reasons, in partic-
ular, generalizing Einstein gravity. One of the possible choices of 
such theory is the Lovelock gravity [1], where the action contains a 
sum of dimensionally-extended Euler densities and coincides with 
Einstein gravity in three and four dimensions. The integral of the 
k-th order term in Lovelock gravity gives the Euler character in di-
mension d = 2k, and the Einstein–Hilbert action is precisely the 
first-order term. The equations of motion, which depend only on 
the Riemann tensor and not on its derivatives, are also “Einstein-
like”. Furthermore, the higher-order derivative terms are also of 
interest in the context of the AdS/CFT correspondence [2,3]. They 
arise naturally in string theory [4].

Since the k-th order term in the Lovelock gravity only af-
fects the local geometry of the manifold in d ≥ 2k + 1, all the 
higher-order terms (k ≥ 2) do not change the Einstein manifold 
in the lower dimensions. However, the higher-order terms do play 
an important role in the renormalization theory [5]. One of the 
gravity theories, known as the conformal (Weyl) gravity, which 
is described by a pure Weyl squared action, has been shown to 
be perturbatively renormalizable in four dimensions, although the 
massive modes are ghostlike. It is a local gauge theory of the 
conformal group, so the equation of motion determines the met-
ric only up to an arbitrary conformal factor. The solutions of the 
Einstein equation are a subset of the solutions of conformal grav-
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ity; any space–time that is conformal to an Einstein space arises 
naturally as a solution of conformal gravity. In 2011, Maldacena 
demonstrated a remarkable result showing that conformal gravity 
with a Neumann boundary condition can select the Einstein solu-
tion out of conformal gravity [6,7].

Conformal gravity is also of interest for cosmology. Although 
Einstein gravity can well describe the physics within the solar sys-
tem, such as the gravitational bending of light and the precession 
of the perihelion of Mercury, there are still some puzzles left on 
scales far beyond the distances of the Solar system. For example, 
the galactic rotation curves are not consistent with the predictions 
of Einstein’s gravity; the unknown “dark matter”, which interacts 
with the baryonic matter only via gravity or via the weak force, is 
introduced to fix the problem. In addition, the concept of dark en-
ergy is also introduced, which is much larger than the zero-point 
energy of the matter fields, in order to provide the energy source 
to explain the observation of our accelerating universe.

Alternatively, one may also question whether it is possible to 
modify the gravity theory in order to explain the physics at a 
large scale, while maintaining the behavior at the scale of the Solar 
system. Since conformal gravity possesses more solutions than Ein-
stein gravity, the dark matter, dark energy problems can be fixed 
within the gravity theory [8–11], which motivates us to investigate 
conformal gravity in more detail. In particular, although conformal 
gravity and Einstein gravity may share the same space–time so-
lutions, the difference from the action means that the black hole 
thermodynamics of the two gravity theories would be different, 
which points to an area where extensive research should be car-
ried out.
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Here, we focus on the thermodynamic phase structure of the 
conformal gravity in the four-dimensional AdS space–time. More-
over, we do not assume the “physical constants”, such as Yukawa 
coupling constants, cosmological constant, and Lovelock coeffi-
cients, to be fixed values; they may be dynamical variables result-
ing form the vacuum expectation values; it is therefore reasonable 
to include them into the thermodynamic laws [12–16]. Recently, 
the idea of including the cosmological constant in the first law 
of black hole thermodynamics becomes popular. See, e.g., [17–35]
for references and reviews. In particular, in AdS space–time the 
negative cosmological constant behaves like the pressure, while its 
conjugate variable can be considered as a thermodynamic volume. 
However, in Einstein gravity, the cosmological constant � comes 
from the action, thus varying � requires changing the system. 
Remarkably, one does not have to worry about this problem in 
conformal gravity, as � arises as the integral constant of the solu-
tion [36–38] instead of the action. This makes the analysis for the 
phase structure self-contained.

We start by giving a brief review of the black hole thermody-
namics of conformal gravity [36]. First, the action is given by a 
square of the Weyl tensor,

S = α

∫
d4x

√−gCμνρσ Cμνρσ . (1)

The coupling constant α plays an important role in critical grav-
ity [39–41]. However, here it is independent of the equation of 
motion and do not change any qualitative feature of the thermo-
dynamic quantities. Without loss of generality, we set α = 1 in the 
following. Moreover, the equation of motion is fourth order,

(2∇ρ∇σ + Rρσ )Cμρσν = 0 . (2)

The most general spherical black hole solution for conformal grav-
ity takes the following form [42,43]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

S2 , (3)

where d�2
S2 is the line element of a 2-dimensional sphere and

f (r) = c0 + c1r + d

r
− 1

3
�r2. (4)

Due to the conformal symmetry of the action, the Weyl rescaling 
of the above metric remains a static spherically symmetric solu-
tion, so the Birkhoff’s theorem only restricts the static spherically 
symmetric solutions to a conformal class. There are four different 
integral constants, c0, c1, d, � in the metric. Three of them must 
obey a constraint,

c2
0 = 3c1d + 1. (5)

When c1 = 0, this solution reduces to the well-known Schwarz-
schild (A)dS space–time. Notice that there exists a discrete freedom 
in choosing the constant c0,

c0 = ±
√

3c1d + 1. (6)

Mathematically, we can also solve c1 in terms of c0 and d. How-
ever, from the thermodynamical perspective, it is preferable to take 
c1 as independent thermodynamical parameter [36].

In our case, � plays the role of the cosmological constant. It 
is an integral constant but not from the action. The energy, which 
is defined by the conserved charge of the timelike killing vector, 
should be identified as enthalpy H of the system [36]

H = (c1c0 − c1 − 16π P d)

12π
. (7)

The other thermodynamic quantities can also be obtained. The 
temperature is proportional to the surface gravity at the horizon 
with radius r0

T = 8π P r3
0 − 3 c0r0 − 6 d

12π r0
2

, (8)

where r0 is the largest root of f (r0) = 0 in AdS space–time, and its 
conjugate, i.e. the entropy is [36]

S = (r0 − c0r0 − 3 d)

3r0
, (9)

which is a function of c0, r0 and d rather than being proportional 
to the area of the horizon. If we also treat c1 as a variable, its 
conjugate quantity is

	 = (c0 − 1)

12π
. (10)

We take the cosmological constant � as the pressure,

P = − �

8π
, (11)

then the thermodynamic volume is

V =
(

∂ H

∂ P

)
S,c1

= − 2d

3
. (12)

So we can get the first law of black hole thermodynamics in 
conformal gravity

dH = T dS + 	dc1 + V dP (13)

and the Smarr relation [36]

H = 2P V + 	 c1. (14)

The Gibbs free energy can be obtained by the relation (or by using 
the Euclidean action)

G = H − T S = 2(c0 − 1)r0 + (3 + 8π Pr2
0)d

12πr2
0

. (15)

Notice that here we have fixed the parameter α, which has di-
mensions of [length]2. If we consider the contributions of the α, 
we will have H → αH , S → αS , V → αV , 	 → α	, G → αG and 
obtain the ordinary scaling dimensions of these thermodynamic 
quantities [36]. The α does not change any qualitative feature of 
the thermodynamic quantities or the Smarr relation.

To study the phase structure of conformal gravity, we should 
begin with the equations of state in P − V plane. By using f (r0) =
0, (5), and (8) to eliminate other unnecessary coefficients, we have 
two solutions of P (T , r0) and V (T , r0). The first one is

P1 = T

2r0
−

c1r0 −
√

1 − 4π T c1r2
0

8πr0
2

,

V 1 = 2r0

9

(
4π T r0 − c1r0 − 2

√
1 − 4π T c1r2

0

)
,

(16)

while the other is

P2 = T

2r0
−

c1r0 +
√

1 − 4π T c1r2
0

8πr0
2

,

V 2 = 2r0

9

(
4π T r0 − c1r0 + 2

√
1 − 4π T c1r2

0

)
.

(17)
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