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The fraction of heavy vector mesons detected after a heavy ion collision provides information about the 
possible formation of a plasma state. An interesting framework for estimating the degree of dissociation 
of heavy mesons in a plasma is the holographic approach. It has been recently shown that a consistent 
picture for the thermal behavior of charmonium and bottomonium states in a thermal medium emerges 
from holographic bottom up models. A crucial ingredient in this new approach is the appropriate 
description of decay constants, since they are related to the heights of the quasiparticle peaks of the 
finite temperature spectral function.
Here we extend this new holographic model in order to study the effect of magnetic fields on the thermal 
spectrum of heavy mesons. The motivation is that very large magnetic fields are present in non central 
heavy ion collisions and this could imply a change in the dissociation scenario. The thermal spectra of cc̄
and bb̄ S wave states is obtained for different temperatures and different values of the magnetic eB field.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A consistent picture for the thermal behavior of heavy vec-
tor mesons in a plasma was obtained recently using holographic 
bottom up models [1–3]. A central point in these works is the 
connection between the finite temperature spectral function and 
the zero temperature decay constants. The spectral function – that 
describes the thermal behavior of quasiparticles inside a thermal 
medium – is the imaginary part of the retarded Green’s function. 
At zero temperature, the essential part of the Green’s function has 
the following spectral decomposition in terms of masses mn and 
decay constants fn of the states:

�(p2) ∼
∞∑

n=1

f 2
n

(−p2) − m2
n + iε

. (1)

The imaginary part of this expression is a sum of Dirac deltas 
with coefficients proportional to the square of the decay constants: 
f 2
n δ(−p2 −m2

n). At finite temperature, the quasi-particle states ap-
pear in the spectral function as smeared – finite size – peaks with 
a height that decrease as the temperature T and/or the density 
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μ of the medium increase. This analysis strongly suggests that in 
order to extend a hadronic model to finite temperature, the zero 
temperature case should provide a consistent description of decay 
constants.

Decay constants for mesons are associated with non-hadronic 
decay. They are proportional to the transition matrix from a 
state at excitation level n to the hadronic vacuum: 〈0| Jμ(0) |n〉 =
εμ fnmn . Experimental data show that for heavy vector mesons 
the decay constants decrease monotonically with radial excitation 
level, as revised in [2,3].

Holographic models, inspired in the AdS/CFT correspondence 
[4–6], provide nice estimates for hadronic masses. However neither 
the hard wall [7–9], the soft wall [10] or the D4–D8 [11] models 
provide decay constants decreasing with excitation level.

An alternative bottom up holographic model was developed in 
ref. [12] in order to overcome this problem. The decay constants 
are obtained from two point correlators of gauge theory operators 
calculated at a finite value of the radial coordinate of AdS space. 
This way an extra energy parameter, associated with an ultravio-
let (UV) energy scale, is introduced in the model. The extension 
of this model to finite temperature in [1] and finite density in 
[2] provided consistent pictures for the dissociation of heavy vec-
tor mesons is the plasma. An improved version of the model of 
ref. [12], that provides a better fit for the charmonium states at 
zero temperature and thus a better picture for the finite tempera-
ture and density cases, was then proposed in [3].
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An interesting tool to investigate the possible existence of a 
plasma state in a heavy ion collision is to analyze the fraction 
of heavy vector mesons produced. The suppression of such parti-
cles indicates their dissociation in the medium [13] (see also [14]). 
This effect corresponds to a decrease in the height of the quasi 
particle peaks of the spectral function. The influence of tempera-
ture and density of the medium in heavy vector meson spectral 
functions was studied in [1–3]. However, there is another impor-
tant factor that deserves consideration. In non central heavy ion 
collisions strong magnetic fields can be produced for short time 
scales [15–17].

The presence of a magnetic field eB has important conse-
quences for hadronic matter. Lattice results [18] indicate a decrease 
in the QCD deconfinement temperature with increasing eB field. 
Similar results show up also from the MIT bag model [19] and also 
from the holographic D4–D8 model [20]. The effect of a magnetic 
field in the transition temperature of a plasma has been studied 
using holographic models in many works, as for example [21–26].

Here we extend the holographic bottom up model of [3] in or-
der to include the presence of a magnetic field. This way it is pos-
sible to investigate the change in the spectral function peaks that 
represent the quasiparticle heavy meson states as a function of the 
intensity of the eB field. In section 2 we describe the model at zero 
temperature showing the results for masses and decay constants. 
Then, in section 3 we present the extension to finite temperature 
in the presence of a magnetic field. Section 4 is devoted to show 
how to calculate the spectral functions. Finally, in section 5 we 
present the results as discuss their implication in terms of heavy 
vector meson dissociation.

2. Holographic model

The model proposed in ref. [3] was conceived for describing 
charmonium states. At zero temperature the background geometry 
is the standard 5D anti-de Sitter space–time

ds2 = R2

z2
(−dt2 + d�x · d�x + dz2) . (2)

The mesons are described by a vector field Vm = (Vμ, V z) (μ =
0, 1, 2, 3), which is dual to the gauge theory current Jμ = ψ̄γ μψ . 
The action is:

I =
∫

d4xdz
√−g e−φ(z)

{
− 1

4g2
5

Fmn F mn

}
, (3)

where Fmn = ∂m Vn − ∂n Vm and φ(z) is a background dilaton field 
that here we choose to have the form

φ(z) = k2z2 + Mz + tanh

(
1

Mz
− k√

	

)
, (4)

in order to represent both charmonium and bottomonium states. 
The parameter k represents the quark mass, 	 the string tension 
of the strong quark anti-quark interaction and M is a mass scale 
associated with non hadronic decay.

Choosing the gauge V z = 0 the equation of motion for the 
transverse (1,2,3) components of the field, denoted generically as 
V , in momentum space reads

∂z

[
e−B(z)∂z V

]
− p2e−B(z)V = 0, (5)

where B(z) is

B(z) = log
( z

R

)
+ φ(z) . (6)

Table 1
Holographic masses and the corresponding decay constants for the Charmonium 
S-wave resonances. Experimental values inside parenthesis for comparison.

Holographic (and experimental) results for charmonium

State Mass (MeV) Decay constants (MeV)

1S 2943 (3096.916 ± 0.011) 399 (416 ± 5.3)

2S 3959 (3686.109 ± 0.012) 255 (296.1 ± 2.5)

3S 4757 (4039 ± 1) 198 (187.1 ± 7.6)

4S 5426 (4421 ± 4) 169 (160.8 ± 9.7)

Table 2
Holographic masses and the corresponding decay constants for the Bottomonium 
S-wave resonances. Experimental values inside parenthesis for comparison.

Holographic (and experimental) results for bottomonium

State Mass (MeV) Decay constants (MeV)

1S 6905 (9460.3 ± 0.26) 719 (715.0 ± 2.4)

2S 8871 (10023.26 ± 0.32) 521 (497.4 ± 2.2)

3S 10442 (10355.2 ± 0.5) 427 (430.1 ± 1.9)

4S 11772 (10579.4 ± 1.2) 375 (340.7 ± 9.1)

Equation of motion (5) presents a discrete spectrum of normal-
izable solutions, V (p, z) = 
n(z) that satisfy the boundary condi-
tions 
n(z = 0) = 0 for p2 = −m2

n where mn are the masses of the 
corresponding meson states. The eigenfunctions 
n(z) are normal-
ized according to:

∞∫
0

dz e−B(z) 
n(z)
m(z) = δmn . (7)

Decay constants are proportional to the transition matrix from 
the vector meson n excited state to the vacuum: 〈0| Jμ(0) |n〉 =
εμ fnmn . They are calculated holographically in the same way as in 
the soft wall model:

fn = 1

g5mn
lim
z→0

(
e−B(z)
n(z)

)
. (8)

The values of the parameters that describe charmonium and 
bottomonium are respectively:

kc = 1.2 GeV; √
	c = 0.55 GeV; Mc = 2.2 GeV ; (9)

kB = 2.45 GeV; √
	B = 1.55 GeV; MB = 6.2 GeV . (10)

The procedure to calculate masses and decay constants is to find 
the normalizable solutions 
n(z) of eq. (5), with the background 
of eq. (4), that vanish at z = 0. Then the numerical solutions are 
used in eq. (8). Tables 1 and 2 show the results for charmonium 
and bottomonium respectively. For comparison, the experimental 
data from ref. [27] is show inside parenthesis. Note that the decay 
constants decrease with radial excitation level.

3. Plasma with magnetic field

Let us now extend the model to finite temperature and in the 
presence of magnetic field, assumed for simplicity to be constant 
in time and homogeneous in space. The extension to finite temper-
ature is obtained replacing AdS space by a Schwarzschild AdS black 
hole. The presence of a magnetic field in the gauge theory side of 
gauge/gravity duality can also be represented geometrically in the 
gravity side [28,29]. The Einstein–Maxwell action is given by:

S = 1

16πG5

∫
d5x

√−g

(
R − F MN F MN + 12

L2

)
+ SG H (11)
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