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The �-isobar degrees of freedom are included in the covariant density functional (CDF) theory to study 
the equation of state (EoS) and composition of dense matter in compact stars. In addition to �’s we 
include the full octet of baryons, which allows us to study the interplay between the onset of delta 
isobars and hyperonic degrees of freedom. Using both the Hartree and Hartree–Fock approximation we 
find that �’s appear already at densities slightly above the saturation density of nuclear matter for a 
wide range of the meson–� coupling constants. This delays the appearance of hyperons and significantly 
affects the gross properties of compact stars. Specifically, �’s soften the EoS at low densities but stiffen 
it at high densities. This softening reduces the radius of a canonical 1.4M� star by up to 2 km for a 
reasonably attractive � potential in matter, while the stiffening results in larger maximum masses of 
compact stars. We conclude that the hypernuclear CDF parametrizations that satisfy the 2M� maximum 
mass constraint remain valid when � isobars are included, with the important consequence that the 
resulting stellar radii are shifted toward lower values, which is in agreement with the analysis of neutron 
star radii.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Compact stars are unique laboratories for studies of dense 
hadronic matter [1–6]. The hadronic core of a compact star extends 
from half up to a few times the nuclear saturation density ρ0. In 
the high-density region of the core a number of exotic degrees 
of freedom are expected to appear in addition to nucleons. Pos-
sible new constituents of matter include hyperons [7–30], delta 
isobars [8,9,31–41], and deconfined quark matter [46–65]. The de-
tails of the composition of compact stars at high densities are not 
fully understood yet. The current observational programs focusing
on neutron stars combined with the nuclear physics modeling of 
their interiors are aimed at resolving the puzzles associated with 
their EoS and interior composition.

Although the appearance of �’s in neutron star matter was 
conjectured long ago [8,31] there has been much less research on 
their properties in the intervening years as compared to hyperons 

E-mail addresses: jiajieli@itp.uni-frankfurt.de (J.J. Li), 
sedrakian@fias.uni-frankfurt.de (A. Sedrakian), fweber@sdsu.edu (F. Weber).

and quark matter. This may partially be a consequence of Ref. [9]
where �’s were found to appear at densities that are much larger 
than the typical central densities of neutron stars. Thus, �’s have 
been considered largely unimportant in neutron star astrophysics.

Recently, a number of studies of �’s in neutron star matter 
appeared which were conducted within the CDF theory in the 
Hartree approximation, i.e., the so-called relativistic mean-field 
model [28,29,34–41]. Some of these studies ignore hyperons in 
order to isolate the effects � isobars have on the nucleonic EoS 
and neutron star properties by choosing a particular set (in some 
cases several sets) of meson–� coupling constants [29,34,39,41]. 
The universal coupling scheme is typically adopted in these stud-
ies. In analogy to hyperons, the � degrees of freedom were found 
to soften the EoS of neutron star matter and to reduce the maxi-
mum mass of a compact star. However, a simultaneous treatment 
of hyperons and �’s appears to be mandatory in order to assess 
the overall effect of these new degrees of freedom on dense mat-
ter and the gross properties of compact stars.

The � degrees of freedom in nuclear dynamics have been stud-
ied in a number of alternative settings. �’s play an important 

https://doi.org/10.1016/j.physletb.2018.06.051
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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role in the studies of nucleon–pion–� dynamics, which resume
the RPA diagrams including �-hole loops with the �-hole vertex 
given by g′

N� Landau–Migdal parameter [42–44]. These studies are 
mainly focused on the pion propagator and dispersion (condensa-
tion) in nuclear matter. More recently, �’s were included in the 
studies of nuclear matter in the chiral approach where the nuclear 
density functional is arranged in powers of small parameters (e.g. 
number of derivatives of the pion field) and �’s appear in virtual 
states [45].

The principal aim of this work is to explore, in great detail, the 
competition between � isobar and hyperon populations in dense 
matter, and to study the impact of � populations on the proper-
ties of compact stars such as masses and radii. For that purpose 
we carry out a detailed analysis of the parameter space of the 
meson–� coupling value within the CDF theory at the relativis-
tic Hartree and Hartree–Fock level.

This work is organized as follows. In Sec. 2 we outline the CDF 
model and its parametrizations. Section 3 presents our results for 
the EoS of dense matter and its composition. The global properties 
of compact stars and their internal structures are discussed in this 
section as well. Finally, a summary of our results is provided in 
Sec. 4.

2. Theoretical model

2.1. CDF model for stellar matter

We start with a brief outline of our theoretical framework, 
which is based on the CDF theory treated in the Hartree and 
Hartree–Fock approximations. The Lagrangian density of the model 
is given by

L = LB + Lm + Lint + Ll, (1)

where the first term LB is the Lagrangian of free baryonic 
fields ψB , with index B labeling the spin-1/2 baryonic octet, which 
comprises nucleons N ∈ {n, p}, hyperons Y ∈ {�, �0,−, �+,0,−}, 
and the spin-3/2 zero-strangeness quartet � ∈ {�++,+,0,−}. Note 
that the �’s are treated as Rarita–Schwinger particles [66]. The 
second term Lm represents the Lagrangian of free meson fields φm , 
which are labeled according to their parity, spin, isospin and 
strangeness. In the present model we include the isoscalar–scalar 
meson σ , which mediates the medium-range attraction between 
baryons, the isoscalar–vector meson ω, which describes the short 
range repulsion, the isovector–vector meson ρ , which accounts for 
the isospin dependence of baryon–baryon interactions, and the π
meson which accounts for the long-range baryon–baryon inter-
action and the tensor force. The two hidden-strangeness mesons, 
σ ∗ and φ, describe interactions between hyperons. The interaction 
between the baryons and mesons is described by the third term 
Lint which has the generic form

Lint ≡ gmBτBψ̄B
mϕmψB , (2)

where gmB is the meson–baryon coupling constant, τB ∈ {1, τ }
is the isospin matrix and 
m ∈ {1, γμ, γ5γμ, σμν} is the relevant 
(Dirac-matrix) vertex. Finally, the last term Ll describes the con-
tribution from free leptons; we include electrons (e−) and muons 
(μ−) and neglect the neutrinos which are irrelevant at low tem-
peratures.

Starting from Eq. (2) we carry out the standard procedure for 
obtaining the density functional in CDF theories. This amounts to 
finding the equations of motions from the Euler–Lagrange equa-
tions of the theory, which for the baryon octet and leptons have 

the form of the Dirac equation, whereas for the � decuplet are 
given by the Rarita–Schwinger equation. The equations of motion 
for meson in the mean-field approximation take the form of Klein–
Gordon equations. Each of the baryon self-energies is then decom-
posed in the Dirac space according to

�(k) = �S(k) + γ0�0(k) + γ · k̂�V (k) (3)

where �S , �0 and �V are the scalar, time and space compo-
nents of the vector self-energies and k̂ is a unit vector along k. 
The energy density functional is then generated by evaluating 
the baryon self-energies �(k) in the Hartree (RMF) or Hartree–
Fock (RHF) approximations [67–70]. The detailed expressions for 
self-energies are given, for instance, in Refs. [41,71]. Note that 
the pion-exchange and the tensor couplings of vector mesons to 
baryons contribute only to the Fock self-energies. In β-equilibrium 
the chemical potentials of the particles are related to each other 
by

μB = bBμn + qBμe, (4)

where bB and qB denote the baryon number and electric charge 
of baryon species B , and μn and μe are the chemical potentials of 
neutrons and electrons, respectively. This, together with the field 
equations and charge neutrality condition allows us to determine 
the EoS and composition of matter for any given net baryonic den-
sity ρ at zero temperature self-consistently.

Once the EoS is determined, the integral parameters, in partic-
ular the mass and the radius, of a compact star of given central 
density can be computed from the Tolman–Oppenheimer–Volkoff 
(TOV) equations [72,73]. To do so we match smoothly our EoS to 
an EoS of the inner and outer crusts [74,75] at the crust–core tran-
sition density ρ0/2, where ρ0 denotes the saturation density of 
ordinary nuclear matter.

2.2. Meson–baryon couplings

We now turn to the procedure of choosing the appropriate 
values of the coupling constant gm� between the mesons and 
baryons. These have to be fitted to the experimental (empirical) 
data of nuclear and hypernuclear systems. In the purely nucleonic 
sector the meson–nucleon (mN) couplings are given by gmN (ρB) =
gmN(ρ0) fmN(x), where x = ρB/ρ0, ρB is the baryonic density. For 
the isoscalar channel, one has

fmN(x) = am
1 + bm(x + dm)2

1 + cm(x + dm)2
, m = σ ,ω, (5)

which is subject to constraints fmN(1) = 1, f ′′
mN(0) = 0 and 

f ′′
σ N (1) = f ′′

ωN(1). The density dependence for the isovector chan-
nels is taken in an exponential form1

fmN(x) = e−am(x−1), m = ρ,π. (6)

In the hypernuclear sector, as usual, the vector meson–hyperon 
couplings are given by the SU(3) flavor symmetric quark model [11,
76] whereas the scalar meson–hyperon couplings are determined 
by their fitting to empirical hypernuclear potentials. We note that 
the isovector couplings are non-universal and, for example, values 
gρ�/gρN � 1/4–1/3 are required to describe the �-atom [77].

1 For the PKO3 interaction used in this study the masses (in MeV) of nucleon, σ -, 
ω-, ρ- and π -mesons are 938.9, 525.6677, 783, 769, 138. The coupling constants at 
the saturation ρ0 = 0.153 fm−3 are gσ = 8.8956, gω = 10.8027, gρ = 2.0302 and 
fπ = 0.3929; the remaining parameters, which describe the density-dependence of 
couplings can be found in Table 1 of Ref. [85].
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