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Constrained by solutions of the continuum three-valence-body bound-state equations, we use pertur-
bation theory integral representations (PTIRs) to develop algebraic Ansätze for the Faddeev wave functions 
of the proton and its first radial excitation, delivering therewith a quantum field theory calculation 
of the pointwise behaviour of their leading-twist parton distribution amplitudes (PDAs). The proton’s 
PDA is a broad, concave function, with its maximum shifted relative to the peak in QCD’s conformal 
limit expression for this PDA. The size and direction of this shift signal the presence of both scalar and 
pseudovector diquark correlations in the nucleon, with the scalar generating around 60% of the proton’s 
normalisation. The radial-excitation is constituted similarly, and the pointwise form of its PDA, which 
is negative on a material domain, is the result of marked interferences between the contributions from 
both types of diquark; particularly, the locus of zeros that highlights its character as a radial excitation. 
These features originate with the emergent phenomenon of dynamical chiral-symmetry breaking in the 
Standard Model.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Wave functions provide insights into composite systems, e.g.
they express the presence and extent of correlations between con-
stituents, and their signature in scattering processes; and thereby 
bridge experiment and theory. This is true within quantum chro-
modynamics (QCD), but there are difficulties. Everyday hadrons 
(p = proton, neutron, etc.) are constituted from up (u) and down 
(d) valence-quarks; but the Higgs boson generates current-masses 
for these fermions which are more than 100-times smaller than 
the scale associated with the composite systems: mu,d ≈ 2–4 MeV
cf. mp ≈ 1 GeV. Plainly, the interaction energy greatly exceeds the 
rest masses of the anticipated constituents, making inapplicable 
the wave functions typical of Schrödinger quantum mechanics.

The difficulties appear chiefly because particle-number is not 
conserved by boosts; and severe challenges are faced when con-
stituents are light, e.g. wave functions describing incoming and 
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outgoing scattering states then represent systems with different 
particle content, so a probability interpretation is lost. Such prob-
lems are circumvented by using a light-front formulation because 
eigenfunctions of the Hamiltonian are then independent of the sys-
tem’s four-momentum [1,2].

The light-front wave function of a hadron with momentum P
and spin λ, �(P , λ), is complicated. In terms of perturbation the-
ory’s partons, �(P , λ) has a countably-infinite Fock-space expan-
sion. Were it necessary to use this complete object in analyses of 
even the simplest processes, then little connection between experi-
ment and theory could be made. Fortunately, collinear factorisation 
in the treatment of hard exclusive processes entails that much can 
be gained merely by studying hadron leading-twist parton distri-
bution amplitudes (PDAs) [3]. Such a PDA is obtained from the 
simplest term in the Fock-space expansion.

Regarding S-wave ground-state light-meson leading-twist PDAs, 
the last decade has seen real progress, not concerning their con-
formal limit [3]: ϕ(x; ζ ) = 6x(1 − x), mp/ζ � 0; but on mp/ζ � 1, 
where they are now known to be broad, concave functions [4–12]. 
This resolves a longtime conflict, removing the possibility that such 
PDAs have a minimum at zero relative momentum [13].

https://doi.org/10.1016/j.physletb.2018.06.062
0370-2693/© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://doi.org/10.1016/j.physletb.2018.06.062
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:cdroberts@anl.gov
https://doi.org/10.1016/j.physletb.2018.06.062
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.06.062&domain=pdf


264 C. Mezrag et al. / Physics Letters B 783 (2018) 263–267

Fig. 1. Poincaré covariant Faddeev equation. The shaded rectangle demarcates its 
kernel: single line, dressed-quark propagator; �, diquark correlation amplitude; and 
double line, diquark propagator. � is the Faddeev amplitude for a baryon of total 
momentum P = (p1 + p2) + p3 = pd + pq . The wave function, χ , is obtained by 
attaching the quark and diquark propagator legs to �.

Concerning the proton’s leading-twist PDA, however, the situ-
ation is as unsatisfactory today as it was previously for mesons. 
Estimates of low-order Mellin moments exist, obtained using sum 
rules [13,14] or lattice-QCD (lQCD) [15–17], but there are no quan-
tum field theory computations of this PDA’s pointwise behaviour; 
and nothing is known about the PDA of the proton’s radial excita-
tion.

2. Proton PDA: definition

In the isospin-symmetry limit, the proton possesses one in-
dependent leading-twist (twist-three) PDA [18], denoted ϕ([x]; ζ )

herein:

〈0|εabc ũa+(z1) C †/n ub−(z2) /n dc+(z3)|P ,+〉

=: 1
2 i f p n · P /n N+

1∫
0

[dx]ϕ([x]; ζ )e−in·P ∑
i xi zi , (1)

where n2 = 0; (a, b, c) are colour indices; q± = H±q := (1/2)(ID ±
γ5)q, /n = γ · n; q̃ indicates matrix transpose; C is the charge con-
jugation matrix, N = N(P ) is the proton’s Euclidean Dirac spinor; ∫ 1

0 [dx] f ([x]) = ∫ 1
0 dx1dx2dx3δ(1 − ∑

i xi) f ([x]); and f p measures 
the proton’s “wave function at the origin”.

ϕ([x]) can be computed once the proton’s Poincaré-covariant 
wave function is in hand, viz.

〈0|εabcũa(y1)ub(y2)d
c(y3)|P , λ〉 =∫ 3∏

i=1

(
d4 pi

(2π)4
e−ipi yi

)
δ(P − ∑3

i=1 pi)χ(p1, p2, p3, P ) . (2)

Following thirty years of study [19–23], a clear picture has ap-
peared. At an hadronic scale, the proton is a Borromean sys-
tem, bound by two effects [24]: one originates in non-Abelian 
facets of QCD, expressed in the effective charge [25] and generat-
ing confined, nonpointlike but strongly-correlated colour-antitriplet 
diquarks in both the isoscalar-scalar and isotriplet-pseudovector 
channels; and that attraction is magnified by quark exchange as-
sociated with diquark breakup and reformation. The presence and 
character of the diquarks owe to the mechanism that dynamically 
breaks chiral symmetry in the Standard Model [24]. This under-
standing transforms the proton bound-state problem into that of 
solving the linear, homogeneous matrix equation in Fig. 1, which 
has been studied extensively, e.g. Refs. [24,26–31], so that the char-
acter of the solution is well known.

Recapitulating only essential features of the Faddeev equation 
solution herein, because extensive discussions are presented else-
where, e.g. the appendices of Ref. [26], we recall that the proton 
Faddeev amplitude in Fig. 1 can be written:

�(P ) = ψ1 + ψ2 + ψ3 , (3)

where the subscript identifies the bystander quark, i.e. the quark 
not participating in a diquark, ψ3 gives ψ1,2 by cyclic permutation 
of all quark labels, and

ψ3({p}, {α}, {σ }) = N 0
3 + N 1

3, (4a)

N 0
3 = [

�0(k; K )
]α1α2

σ1σ2
�0(K )

[
S(�; P )N(P )

]α3

σ3
, (4b)

N 1
3 = [

�
1 j
μ (k; K )

]α1α2

σ1σ2
�1

μν(K )
[
A j

ν(�; P )N(P )
]α3

σ3
, (4c)

({p}, {α}, {σ }) are the momentum, isospin and spin labels of the 
dressed-quarks constituting the bound state; P = p1 + p2 + p3 is 
the total momentum of the baryon; k = p1, K = p1 + p2, � = −K +
(2/3)P ; and the j sum runs over the (1, 1) = +1 and (1, 0) = 0
isospin projections. The matrix-valued functions � in Eqs. (4) are 
the diquark correlation amplitudes in Fig. 1; �0, �1

μν are the as-

sociated dressed-propagators; and S , A j
μ are matrix-valued quark–

diquark amplitudes, describing the relative-momentum correlation 
between the diquark and bystander quark, viz. they are the objects 
returned by solving the Faddeev equation.

The proton’s Faddeev wave function, χ , is obtained from 
Eqs. (3), (4) by attaching the appropriate dressed-quark and 
-diquark propagators. All relevant quantities are known and we 
therefore proceed by using algebraic representations for every ele-
ment, with each form and their relative strengths, when combined, 
based on the results of modern analyses [24,26–31]. The dressed-
quark and -diquark propagators are:

S(p) = (−i/p + M)σM(p2) , σM(s) = 1/[s + M2] , (5a)

�0(K ) = σM0(K 2) , �1
μν(K ) = Tμν(K )σM1(K 2) , (5b)

σ̂M(s) = M2σM(s); Tμν(K ) = [δμν − KμKν/K 2];

n0�
0(k; K )C † = iγ5

1∫
−1

dz ρ(z) σ̂��(k2+K ) , (6a)

n1�
1
μ(k; K )C † = i(γ T

μ + r1f (k; K )[/k, γ T
μ])

×
1∫

−1

dz ρ(z) σ̂��(k2+K ) , (6b)

where ρ(z) = (3/4)(1 − z2), k+K = k + (z −1)K/2; γ T
μ = Tμν(K )γν , 

f (k; K ) = k · K/(k2 K 2(k − K )2)1/2; and r1 = 1/4, n0,1 are fixed by 
requiring that the zeroth Mellin moment of the leading-twist PDA 
of each diquark correlation is [n · K/n · P ], i.e. correctly normalised. 
The final elements are:

n S(�; P ) = i

1∫
−1

dz ρ(z) σ̂�0
p
(w+P ) , (7a)

n A j
ν(�; P ) = rA

1
6 o jγ5[γν − irP Pν ]

×
1∫

−1

dz ρ(z) σ̂�1
p
(w+P ) , (7b)

where w+P = [−�+P + (2/3)P ]2; o+ = √
2, o0 = −1; rP = 13/87; 

rA measures the relative 1+:0+ diquark strengths in the Faddeev 
amplitude; and n is that amplitude’s canonical normalisation con-
stant, whose value ensures the proton has unit charge [32].

We choose the parameters in Eqs. (6), (7) so as to emulate re-
alistic Faddeev wave functions [26,27,31,33]: M = 2/5, M0 = 2/3, 
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