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We study physics related to the nuclear level density calculated either in a realistic shell model or, 
equivalently, with the use of the statistical moments method. At excitation energy up to 12–15 MeV, the 
obtained level density grows exponentially being well described by the so-called constant temperature 
model. We discuss the physical meaning of the effective temperature parameter and its dependence 
on the interaction Hamiltonian including nucleon pairing and deformation effects. The possible 
interpretation relates the underlying physics with the gradual chaotization of typical wave functions 
rather than with the pairing phase transition.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The importance of reliable knowledge of the nuclear level den-
sity is obvious for the understanding of nuclear reactions − in the 
laboratory, in technological applications, and in cosmos. There is 
a long history of various approaches to the problem of level den-
sity which cannot be fully reflected in this Introduction. We just 
briefly mention the Fermi-gas description [1–3], more advanced 
mean-field methods [4] accounting for the pairing correlations, and 
Monte-Carlo approaches [5]. Of course, modern shell-model (con-
figuration interaction) theory in principle gives, for the accepted 
Hamiltonian, the exact result [6,7] limited in energy by the un-
avoidable truncation of the orbital space but this approach is al-
ways related to the diagonalization of prohibitively large matrices. 
The shell-model Monte-Carlo method [8] gives the results with-
out diagonalization but it currently accounts only for the most 
regular parts of accepted interactions. It was earlier shown [9]
that the interaction matrix elements corresponding to incoherent 
collision-like processes are equally contributing to the resulting 
level density increasing its width and providing its smooth energy 
dependence.

Modern versions of the shell model using the spectroscopically 
tested Hamiltonians allow us to predict reliably the level density 
up to excitation energy of about 12–15 MeV where the resonances 
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in the continuum are still not too broad. This could be sufficient 
for many practical purposes. It turns out, see [9–11] and references 
therein, that frequently it is possible to avoid the full diagonaliza-
tion using the so-called moments method [12] based on statistical 
properties of many-body wave functions. It was shown repeatedly 
that, in those cases which practically allow the complete diago-
nalization, results of the moments method are essentially identical 
at energies of interest to the results from the full shell-model so-
lution. In such cases, the comparison with the experimental data 
becomes in fact a quality check for the underlying shell-model 
Hamiltonian.

In what follows we discuss some features of physics that de-
termine the level density in a nucleus as an isolated quantum 
system of strongly interacting fermions. It turns out that in the 
majority of cases in the energy region of interest, that includes 
the beginning of the continuum where the energy levels become 
(still non-overlapping) resonances, the level density grows expo-
nentially. A large systematics of experimental data for many nuclei 
and comparison with the Fermi-gas approaches can be found in 
Refs. [9,13,14]. The studies in the shell-model framework [9,11,15]
seem to prefer the description usually associated with the so-
called constant temperature model where the effective temperature 
T is introduced as an inverse coefficient in the exponent of the 
level density as a function of excitation energy. Varying the shell-
model Hamiltonian we can determine the dependence of this pa-
rameter on various interaction parts. This puts limitations on the 
possible interpretation of the constant temperature model. In fact, 
the parameter T in the level density is rather an analog of the 
limiting Hagedorn temperature in particle physics [16–18]. The for-
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mally found thermodynamic temperature T t−d starts at zero for the 
ground state and approaches the value of T at excitation energy E
noticeably higher than T , usually around or above 10 MeV.

As in particle physics, this does not mean that the system can-
not be heated further but it can be interpreted as a transition to 
the chaotic stage of more or less randomly interacting constituents. 
As known from many studies, the internal states of nuclei at such 
energy are close to random superpositions of many quasiparticle 
excitations so that the local structure of the spectra can be well 
juxtaposed to that of the Gaussian orthogonal ensemble [19,20]. 
At the same time, the obvious interpretation of this evolution as 
a phase transition from superfluid paired dynamics to the normal 
Fermi liquid is not sufficient. The specific examples below show 
that the behavior persists if the standard attractive pairing inter-
action (the source of nuclear superfluidity) is removed from the 
Hamiltonian or even substituted by repulsion. Supposedly we have 
to deal with a more general process of stochastization of dynamics 
as a typical feature of quantum many-body systems.

2. Constant temperature model

For all sd-nuclei, and all classes of states with different values 
of nuclear spin J , the level density was calculated and tabulated 
[11] using the shell model USDB Hamiltonian [21] and either the 
moments method or the full diagonalization; examples for heavier 
nuclei are given also in [9]. In the majority of cases, the result-
ing level density can be well described by the so-called constant 
temperature formula

ρ(E) = ρ0eE/T , (1)

where the prefactor is usually written in the form

ρ0 = 1

T
e−E0/T . (2)

Here we introduce two parameters, T and E0, while E in eq. (1) is 
the actual nuclear excitation energy counted from the ground state. 
This parametrization was suggested long ago [22,17] and success-
fully used for the description of data [9,13–15,18]. In traditional 
Fermi-gas models, the level density typically grows as exp(

√
2aE)

with the constant a determined by the single-particle level density 
at the Fermi surface. Fig. 1 shows the evolution of the effective 
temperature T along the isotope chains of magnesium, aluminum, 
and silicon [11], while Fig. 2 illustrates the quality of description 
in the moments method and the USD B shell model Hamiltonian 
for 24Mg when compared to the experimental level densities.

As discussed earlier [9,11], the parameter T of eq. (1) reaches 
its minimum at N = Z or at neighboring odd nuclei. This quan-
tity is kind of effective temperature kept constant within a broad 
interval of excitation energies E . This is the source of the name 
“constant temperature model”, although the definition (1) just pro-
vides 1/T as the constant rate of increase of the level density 
as a function of excitation energy. As shown in [11], such a phe-
nomenological expression is indeed working universally for almost 
all sd-nuclei described by the shell model. It provides the good de-
scription in the pf -region as well.

Here we have to stress that the effective temperature parameter 
T in eqs. (1) and (2) does not coincide with the temperature T t−d

found from thermodynamics for the system with the level den-
sity (1). Indeed, defining microcanonical thermodynamic entropy 
S through the cumulative level number

N (E) =
E∫

0

dE ′ρ(E ′) = eS , (3)

we come to

S = ln
[
ρ0T (eE/T − 1)

]
. (4)

As always for a system with a discrete energy spectrum, this ex-
pression violating the third law of thermodynamics acquires the 
meaning only at non-zero (practically quite small) excitation en-
ergy, when it makes sense to speak about the level density. Now 
we can introduce the thermodynamic temperature,

T t−d =
(

∂ S

∂ E

)−1

= T
(

1 − e−E/T
)

, (5)

which is always lower than our auxiliary temperature T but coin-
cides with that at E � T . The thermodynamic temperature T t−d
starts from zero at very low excitation energy and then grows 
as a function of E to the maximum value of T , while the effec-
tive temperature T is constant in the broad interval of excitation 
energies, usually including the continuum threshold. The thermo-
dynamic heat capacity ∂ E/∂T t−d = exp(E/T ) increases from E = 0
exponentially (in usual Fermi-gas models it grows linearly).

As known from discussions of the Hagedorn temperature ex-
tracted from the exponentially growing density of resonances, 
eq. (5) does not mean the existence of the absolute hottest tem-
perature. The system just becomes a chaotic gas of randomly in-
teracting constituents (quarks or strings in quantum field theory 
and quasiparticles in the nuclear case). At higher excitation energy 
the exponential level density law (1) does not work anymore; the 
partition function defined in a standard way,

Tr(e−H/T t−d) =
∫

dE ρ(E)e−E/T t−d , (6)

would diverge. It was shown long ago, see for example [19], that 
the full shell-model level density in a finite fermionic space is 
given by a particle–hole symmetric bell-shape curve that is essen-
tially Gaussian close to the centroid; the going down part beyond 
the energy centroid formally corresponds to negative temperature 
(inversion of occupancies in the finite Hilbert space). Above some 
energy, realistically much lower than the Gaussian centroid, the 
validity of the description (1) expires, even if the states outside of 
the originally truncated orbital space still do not enter the game. 
From Fig. 3, one can see the excitation energy limits (∼ 15 MeV) 
for the constant temperature model applied to 24Mg.

Assuming for the global shell-model level density the standard 
Gaussian shape,

ρg(E) = 1√
2πσ 2

e−(E−Ec)
2/(2σ 2), (7)

we should be able to match continuously this function with the 
constant temperature model valid at low excitation energy. The 
global description of the Gaussian (7) introduces [19] an average 
temperature

T g(E) = σ 2

Ec − E
. (8)

This shows the infinite temperature at the centroid with the jump 
to negative temperature after the middle which physically displays 
the particle–hole symmetry in a finite orbital space.

As shown long ago [19,23], the formally defined global tem-
perature T g with its Gaussian energy dependence agrees with the 
temperature parameter fit by the fermionic occupation numbers 
of individual states found in the exact shell-model solution (see 
also the discussion in [24] combining atomic and nuclear exam-
ples). This means that, starting with some excitation energy, the 
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