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We compute the vacuum polarization energy of soliton configurations in a model with two scalar 
fields in one space dimension using spectral methods. The second field represents an extension of the 
conventional φ4 kink soliton model. We find that the vacuum polarization energy destabilizes the soliton 
except when the fields have identical masses. In that case the model is equivalent to two independent 
φ4 models.
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1. Introduction

Two-field models supporting solitons in one space dimen-
sion obtainable as Bogomol’nyi–Prasad–Sommerfeld (BPS) solutions 
have been considered in the context of a number of applications, 
including supersymmetry and domain walls, see [1–7] and refer-
ences therein. The essential feature leading to these applications 
is that in one space dimension the soliton has a localized kink 
shape, which becomes a surface (domain wall) when embedded 
in higher dimensions. When two (or more) fields interact multiple 
kinks at finite separation(s) emerge. The BPS construction is then 
carried out by writing a superpotential for the fields. The simplest 
such model has been introduced by Bazeia et al. [4] who also con-
structed some of its soliton solutions, while the full spectrum of 
solitons, including numerical simulations, was uncovered by Shif-
man and Voloshin [6]. In Ref. [8] the analytically known solitons 
of this model were considered as an illustration of general tech-
niques allowing for the extension of scattering theory methods for 
computing one-loop quantum corrections [9] to the case of mod-
els with a mass gap, which then have multiple thresholds in the 
scattering problem. Such corrections were computed in that model 
for the simple cases where the soliton does not couple the fluc-
tuation modes of the two fields in Ref. [10] and for small and 
moderate separation of the kinks in Refs. [11,12] using heat kernel 
methods [13].

In this Letter, we apply the methods of Ref. [8] to study these 
quantum corrections in more detail by going beyond the analyt-
ically known solitons for this particular model, which we define 
following the approach and conventions of Ref. [4]. We show that 
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quantum corrections can significantly alter the classical stability of 
solitons in this model. In particular, the model can become unsta-
ble to the formation of a kink–antikink pair separated by a large 
region of secondary vacuum, whose classical energy density equals 
that of the primary vacuum outside the kink–antikink pair, but 
whose one-loop quantum energy density is negative.

The Bazeia model extends the φ4 model by a second scalar 
field χ . Its Lagrangian reads

L = 1

2

[
∂νφ∂νφ + ∂νχ∂νχ

] − λ

4

[
φ2 − M2

2λ
+ μ

2
χ2

]2

− λ

4
μ2χ2φ2 . (1)

The Lagrangian contains the typical coupling constant λ and the 
mass scale M as in the conventional φ4 model. We will discuss the 
meaning of the dimensionless coupling constant μ shortly. First we 
note that in the case μ = 2, when the two fields are indistinguish-
able, the orthogonal transformation ϕ1,2 = 1√

2
[χ ± φ] decouples 

the model into[
φ2 − M2

2λ
+ χ2

]2

+λχ2φ2 = 2

[
ϕ2

1 − M2

4λ

]2

+ 2

[
ϕ2

2 − M2

4λ

]2

,

which is a sum of two conventional and identical φ4 models. As 
a result, the known results [15] from the φ4 model with its kink 
soliton solution will provide checks of our calculations.

There are two distinct vacuum configurations. First, the solu-
tion with φ = ±M/

√
2λ and χ = 0, adopted from the φ4 model, 

and second, the solution with φ = 0 and χ = ±M/
√

μλ. Later we 
will see that only the first allows for BPS soliton solutions unless 
μ = 2, and thus we refer to it as the primary vacuum and the sec-
ond as the secondary vacuum. The masses for fluctuations around
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the primary vacuum are mφ = M and mχ = μM/2. That is, the di-
mensionless coupling constant is twice the ratio of the two masses.

After appropriate redefinition of the fields, (φ, χ) → (M/√
2λ)(φ, χ) and the coordinates, xν → 2xν/M the rescaled La-

grangian, L → (M4/8λ)L is conveniently expressed as

L = 1

2

[
∂νφ∂νφ + ∂νχ∂νχ

] − U (φ,χ) with

U (φ,χ) = 1

2

[
φ2 − 1 + μ

2
χ2

]2 + μ2

2
φ2χ2 . (2)

In these units the primary vacuum configuration is φvac = ±1 and 
χvac = 0 so that mχ = μ and mφ = 2. Note that with these di-
mensionless variables the classical mass is measured in units of 
M3/λ, while the one-loop quantum energy, which is central to the 
current study, scales with M/mφ . The different scales arise from 
the overall loop-counting factor in L that emerges from canonical 
quantization.

In Section 2 we describe the construction of the solitons in 
this model. Following, in Section 3, we review the computation of 
the one-loop quantum, or vacuum polarization energy (VPE) in the 
no-tadpole renormalization scheme. In Section 4 we present the 
numerical results for the VPE and show that it produces an insta-
bility unless μ = 2. We conclude in Section 5. In an Appendix we 
show that the finite renormalization imposing on-shell conditions 
does not alter the conclusion of instability.

2. Soliton

The Bazeia model [4] is defined to allow a BPS construction for 
the classical energy

Ecl = 1

2

∞∫
−∞

dx

[
φ′ 2 + χ ′ 2 +

(
φ2 − 1 + μ

2
χ2

)2 + μ2φ2χ2
]

= 1

2

∞∫
−∞

dx

[(
φ2 − 1 + μ

2
χ2 ± φ′)2 + (

μφχ ± χ ′)2
]

±
[
φ − 1

3
φ3 − μφχ2

]∞

−∞
, (3)

where the prime denotes the derivative with respect to the (di-
mensionless) coordinate x. We immediately see that only profile 
functions that assume the primary vacuum configuration can have 
finite non-zero energy.1 Choosing φ(±∞) = ±1 requires the upper 
sign in Eq. (3) because φ(x) must (monotonically) increase. Then 
the BPS equations read

dχ(x)

dx
= −μφ(x)χ(x) and

dφ(x)

dx
= 1 − φ2(x) − μ

2
χ2(x) . (4)

These coupled differential equations have been studied in detail 
by Shifman and Voloshin [6]. For completeness we discuss those 
results. The model exhibits translational invariance and we cen-
ter the (eventual) soliton at x0 = 0. Then χ and φ are symmet-
ric and anti-symmetric functions, respectively,2 and so φ(0) = 0
and χ ′(0) = 0. We are free to choose χ(0) ≥ 0. If χ(0) >

√
2/μ, 

φ′(0) < 0 so that φ(0+) < 0. In turn χ would increase and χ(0)

1 For μ = 2 an alternative BPS construction is possible producing a soliton with 
lim|x|→∞ χ(x) �= 0.

2 Eqs. (4) also allow the opposite choice; but then the energy, Eq. (3) is zero.

Table I
Analytically known soliton solutions [4,6].

φ(x) χ(x) Parameters

I) tanh(x) 0 a = 0

II) tanh(μx)
√

2(1/μ−1)
cosh(μx) μ < 1, a = √

1 − μ

III) sinh(2x)
b+cosh(2x)

√
b2−1

b+cosh(2x) μ = 2, b = 1+a2

1−a2

IV) (1−a2)sinh(x)
a2+(1−a2)cosh(x)

2a√
a2+(1−a2)cosh(x)

μ = 1
2

would be a minimum. Furthermore φ′ would turn even more neg-
ative and not approach +1 at spatial infinity. By contradiction we 
thus conclude that 

√
2/μ is an upper bound for χ(0) and we pa-

rameterize χ(0) = a
√

2/μ with 0 ≤ a < 1. An equivalent bound 
was derived in Ref. [6] from the condition that the solution to

dφ2

dχ
= 2φ

dφ

dx

(
dχ

dx

)−1

= −2 − 2φ2 − μχ2

μχ

is consistent with φ2 ≥ 0.
Because of the reflection symmetry x ↔ −x it is sufficient to 

solve Eqs. (4) on the half-line x ≥ 0. In the numerical simulation 
we initialize φ(0) = 0 and χ(0) = a

√
2/μ and vary a. For any nu-

merical solution we then verify that the first integral in Eq. (3)
produces Ecl = 4

3 . We also verify that the numerical solutions agree 
with the analytically known results listed in Table I.

We thus find that the various known analytical solutions are 
not independent but are related by a single parameter. If these 
solitons were independent, a third zero mode for the small am-
plitude fluctuations about the soliton along the direction in field 
space connecting the solutions would have emerged, but only two 
have been observed [8]. Stated otherwise, the solitons are parame-
terized by two continuous parameters [6]: the center of the soliton, 
which we set to zero, and the amplitude of the χ field, which 
we parameterize by a. Varying these parameters produces the two 
observed zero modes. Alternatively, the family of solitons can be 
constructed by successively adding infinitesimal contributions pro-
portional to the zero mode wave-function.

The limit a → 1 deserves further discussion. In that case, the 
right-hand-sides of Eq. (4) are tiny in a wide region around x = 0, 
so that the profiles stay constant at their x = 0 values. Eventu-
ally two well separated structures emerge at which φ changes 
from −1 to zero and zero to +1, respectively [6]. Simultaneously, 
χ changes from zero to a

√
2/μ and back to zero. We show this be-

havior in Fig. 1 (where we only display the x ≥ 0 regime since the 
profiles are obtained by reflection for x ≤ 0). When a → 1, χ(0)

approaches 
√

2/μ and the slope φ′(0) decreases so that the pro-
files assume the secondary vacuum configuration in a large range 
of coordinate space.

While μ is a model parameter, a is a variational parameter 
that we tune to minimize the total energy. Since Ecl does not de-
pend on a, we only need to consider the a dependence of the VPE, 
whose formulation we discuss next.

3. Vacuum polarization energy

The computation of the vacuum polarization energy in mod-
els with a mass gap (μ �= 2) has been established in Ref. [8]. We 
briefly summarize it here. The central input is the Jost function for 
imaginary momenta t = ik. The starting point for its computation 
is the second order differential equation

Z ′′(t, x) = 2Z ′(t, x)D(t) + M2 Z(t, x) − Z(t, x)M2 + V (x)Z(t, x)

with M2 =
(

μ2 0
0 4

)
(5)
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