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The transport properties of massless fermions in 3 + 1 spacetime dimension have been in the focus of 
recent theoretical and experimental research. New transport properties appear as consequences of chiral 
anomalies. The most prominent is the generation of a current in a magnetic field, the so-called chiral 
magnetic effect leading to an enhancement of the electric conductivity (negative magnetoresistivity). 
We study the analogous effect for axial magnetic fields that couple with opposite signs to fermions of 
different chirality. We emphasize local charge conservation and study the induced magneto-conductivities 
proportional to an electric field and a gradient in temperature. We find that the magnetoconductivity is 
enhanced whereas the magneto-thermoelectric conductivity is diminished. As a side result we interpret 
an anomalous contribution to the entropy current as a generalized thermal Hall effect.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and motivation

Chiral anomalies [1,2] and the specific transport phenomena in-
duced by them such as the chiral magnetic and the chiral vortical 
effects have been extensively discussed in the recent years (see [3,
4] for reviews).

In a theory of massless Dirac fermions the vector current Jμ =
�̄γ μ� and axial current Jμ5 = �̄γ5γ

μ� can be defined. In such a 
theory the chiral magnetic effect (CME) describes the generation of 
an electric current in a magnetic field in the presence of an axial 
chemical potential

�J = μ5

2π2
�B , (1)

where μ5 is the axial chemical potential conjugate to the axial 
charge operator Q 5 = ∫

d3x�̄γ5γ
0�.

This formula has to be interpreted with care. At first sight it 
predicts the generation of a current in equilibrium. It has been 
pointed out however that such an equilibrium current is forbidden 
by the so-called Bloch theorem. In relation to the CME this theo-
rem has first been invoked in a condensed matter context in [5]. 
A recent discussion of the Bloch theorem has been given in [6]. 
The theorem can be formulated as

E-mail addresses: karl .landsteiner @csic .es (K. Landsteiner), yanliu @buaa .edu .cn
(Y. Liu).

∫
d3x �J (x) = 0 , (2)

in thermal equilibrium. Seemingly this is violated by eq. (1) for 
a homogeneous magnetic field. The important point emphasized 
in [6] is that the Bloch theorem is valid only for exactly conserved 
currents. This allows to resolve the tension between eq. (1) and the 
Bloch theorem. More precisely eq. (1) holds only for the so-called 
covariant version of the current. This covariant current is not a 
truly conserved current but rather has the anomaly

∂μ Jμ = 1

8π2
εμνρλ Fμν F 5

ρλ , (3)

where one also introduces a axial field A5
μ as source for insertions 

of the axial current Jμ5 . Similarly the covariant version of the axial 
anomaly is

∂μ Jμ5 = 1

16π2
εμνρλ

(
Fμν Fρλ + F 5

μν F 5
ρλ

)
. (4)

In quantum field theory the currents are composite operators and 
have to be regularized. This regularization introduces certain ambi-
guities that have to be fixed by demanding certain classical prop-
erties of the currents to hold on the quantum level. One way to fix 
these ambiguities is to define Jμ and Jμ5 to be invariant objects 
under both vector- and axial-type gauge transformations [7]. The 
disadvantage of this definition is that it does not result in a con-
served vector like current but rather leads to the anomaly eq. (3). 
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On the other hand one can insist on the vector like current to be 
exactly conserved ∂μJ

μ = 0. The relation between the two defini-
tions of currents is

Jμ = Jμ − 1

4π2
εμνρλ A5

ν Fρλ . (5)

Due the axial anomaly the axial vector Jμ5 is never conserved and 
therefore its source A5

μ can not be interpreted as a true gauge field. 
Therefore the Chern–Simons current in (5) is a physical current in 
a completely analogous way as the Chern–Simons current appear-
ing in the quantum Hall effect. This resolves the tension between 
the chiral magnetic effect and the Bloch theorem in the follow-
ing manner. Thermal equilibrium is defined by the grand canonical 
ensemble with density matrix exp(−(H −μ5 Q 5)/T ). This is equiv-
alent to considering the theory in the background of a temporal 
component of the axial field A5

0 = μ5. Now the chiral magnetic ef-
fect in the exactly conserved current Jμ takes the form [8]

�J = μ5

2π2
�B − A5

0

2π2
�B , (6)

where the second term stems from the Chern–Simons current in 
eq. (5). Since in strict equilibrium A5

0 = μ5 this shows that the 
chiral magnetic effect for the conserved current (5) vanishes as 
demanded by the Bloch theorem. The importance of defining the 
coserved current has also been discussed in chiral kinetic theory 
in [9].

On the other hand the closely related chiral separation effect

�J5 = μ

2π2
�B , (7)

does not suffer any such correction. Since the axial current is al-
ways affected by an anomaly there is no contradiction to the Bloch 
theorem as pointed out in [6].

There is however a third related effect if one allows for axial 
magnetic fields, �B5 = �∇ × �A5. This is a magnetic field that cou-
ples with opposite signs to fermions of different chirality. The axial 
magnetic effect takes the form

�J = �J= μ

2π2
�B5 . (8)

Formally it describes the generation of a vector-like current in the 
background of an axial magnetic field at finite (vector-like) chem-
ical potential. Note that the formula holds for both the covariant 
and the conserved form of the currents. Therefore this formula 
seems to be in much greater tension with the Bloch theorem than 
the chiral magnetic effect. One might dismiss this tension on the 
grounds that so far at a fundamental level no axial fields seem to 
exist in nature. However, it has been argued that such fields can 
appear in the effective description of the electronics of advanced 
materials, the so-called Weyl semimetals [10–13]. A low energy 
field theoretical description of the electronics of these materials 
given by the Dirac equation

γ μ(iDμ + bμγ5)� = 0 . (9)

Here Dμ is the usual covariant derivative and the parameter bμ

enters just like the field A5
μ coupling to the axial current. It has 

been argued that straining such materials can lead to spatial vari-
ation of the parameter bμ and in consequence to the appearance 
of effective axial magnetic fields in eq. (9). The reason why there 
is no contradiction to the Bloch theorem in this case is as follows. 
The parameter bμ exists only within the material and necessarily 
vanishes outside. If for definiteness we assume the axial magnetic 

field to be directed along the z direction and we compute the total 
axial flux at through a surface 
 at some fixed z = z0

�5 =
∫



dxdyB5
z (x, y, z0) =

∫
∂


d�S · �b = 0 , (10)

since one can always take the boundary of the surface to lie en-
tirely outside the material where �b = 0. Therefore the axial ana-
logue of the chiral magnetic effect (8) can not induce a net current 
and this resolves the tension with the Bloch theorem since no net 
current can be generated [14,15].

We will take these considerations as motivation to study 
electro- and thermo-magnetotransport in the background of ax-
ial magnetic fields under the assumption that the Bloch theorem 
is implemented by a vanishing net axial magnetic flux (10). This 
implies that the net equilibrium electric current vanishes but as 
we will see upon applying an electric field (or equivalently a gra-
dient in chemical potential) and a temperature gradient leads to 
anomaly induced net contributions to the currents.

2. Anomalous transport

We study a simple of model of anomalous transport with cou-
pled energy and charge transport. This means that in contrast to 
a full hydrodynamic model we assume that no significant collec-
tive flow parametrized by a flow velocity develops.1 Not only is 
this a simpler model allowing to study the effects of anomalies on 
transport it might also be more directly relevant to systems where 
elastic scattering on impurities impedes the build up of collective 
flow.

We develop now a formal transport model based on the anoma-
lous continuity equations

ε̇ + �∇ · �Jε = �E · �J , (11)

ρ̇ + �∇ · �J = c�E · �B , (12)

where ε is the energy density and �Jε is the energy current. Charge 
conservation is affected by an anomaly with anomaly coefficient c. 
The right hand side of equation (11) quantifies the energy injected 
into the system by an electric field (Joule heating) whereas (12)
describes the (covariant) anomaly. So far this is not specific to ax-
ial magnetic fields but rather relies only on the presence of an 
anomaly in the current Jμ = (ρ, �J ).

To discuss transport we write down constitutive relations for 
�Jε , �J and take as thermodynamic forces the gradients in the ther-
modynamic potentials and external electric and magnetic fields,( �Jε

�J
)

= L ·
( �∇ ( 1

T

)
�E
T − �∇ (μ

T

)
)

+
(

σ̂B

σB

)
�B . (13)

The matrix L encodes response due to gradients in chemical 
potential and temperature. {σ̂B , σB} describe response due to the 
magnetic field. In principle we could also allow an independent 
response due to the electric field. In our ansatz we have thus an-
ticipated that positivity of entropy production is not compatible 
with such additional terms in the constitutive relations.

1 This does not mean that the velocity or the variation of the velocity is zero, 
just that it cannot be determined by the conserved equations. Our transport model 
can not be obtained from hydrodynamics by setting the flow velocities to zero. Hy-
drodynamic flow (i.e. non vanishing velocity) appears already at zeroth order in 
derivatives and this imposes constraints on the first order transport coefficients that 
can appear in the constitutive relations [16]. Since for strong momentum relaxation 
flow is absent such relations are not present. This model has similarity to the treat-
ment in the theory for incoherent metal in 2+1D [17].



Download English Version:

https://daneshyari.com/en/article/8186432

Download Persian Version:

https://daneshyari.com/article/8186432

Daneshyari.com

https://daneshyari.com/en/article/8186432
https://daneshyari.com/article/8186432
https://daneshyari.com

