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Unification of Randall–Sundrum and Regge–Teitelboim brane cosmologies gives birth to a serendipitous 
Higgs–deSitter interplay. A localized Dvali–Gabadadze–Porrati scalar field, governed by a particular 
(analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a 
deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets 
quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. 
This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary 
initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive 
nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature 
vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe 
universes dominated by a residual dark energy combined with damped matter oscillations, an infinite 
tower of excited levels undergo a Big Crunch.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The no-boundary proposal [1] invokes basic quantum mechan-
ics to avoid the classically unavoidable Big Bang singularity. Cre-
ation in this language is a smooth Euclidean to Lorentzian tran-
sition, with the emerging (finite scale factor) universe resembling 
alpha decay. The simplest model of this kind is constructed at the 
level of the mini superspace, requires a positive cosmological con-
stant � > 0, and can only be implemented for a closed k > 0 space. 
A variant which introduces a supplementary embryonic era can be 
realized, ad-hoc [2] by including a radiation energy density term, 
field theoretically by invoking the embedding approach [3], or via 
the landscape of string theory [4]. Brane extensions have also been 
discussed [5]. The theoretical highlight of the no-boundary pro-
posal is the wave function of the universe, the solution of the 
Schrodinger Wheeler–deWitt (WdW) equation [6].

The two Randall–Sundrum (RS) models [7], followed by their 
Dvali–Gabadadze–Porrati (DGP) and Collins–Holdom (CH) exten-
sions [8] which supplement a 4-dim Einstein–Hilbert part to the 
underlying 5-dim action, are presumably the prototype brane mod-
els. The first rights are reserved, however, to the Regge–Teitelboim 
(RT) model [9] where the universe is treated as a 4-dim extended 
test object floating geodesically [10] in a 5-dim non-dynamical 
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background. Moreover, the first field theoretically consistent brane 
variation, albeit in a flat spacetime, was formulated by Dirac [11]. 
Exporting the Dirac prescription to the gravitational regime [12]
allows us to treat the variety of models as special limits of a 
single unified brane cosmology. This Letter attempts to take the 
no-boundary proposal one step further to expose the Hydrogen-
like spectrum (with deSitter as the ground state) of spontaneously 
created unified brane universes.

2. Unified brane cosmology in a nutshell

Let the 4-dim FLRW cosmological line element

ds2 = −dt2 + a2(t)
(

dr2

1−kr2 + r2d�2
)

(1)

be isometrically embedded within a Z2-symmetric (L and R 
branches, respectively) 5-dim AdS background characterized by a 
negative cosmological constant �5 < 0. This can be done for any 
scale factor a(t) and without imposing any geometrical constraints. 
The associated extrinsic curvatures are given explicitly by

KL,R
μν =

[
1
ξ

(
ä
a − 1

6 �5

)
0

0 −ξa2γi j(r, θ)

]
. (2)

It is ξ(a) which governs the cosmic evolution equation, with the 
latter cast into the familiar FLRW format
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ȧ2 + k

a2
= �5

6
+ ξ2(a) . (3)

Within the framework of unified brane cosmology [12], in a nut-
shell, ξ(a) is the root of the cubic equation

ρ = 3ξ2

8πG4
+ 3ξ

4πG5
+ �5

16πG4
+ ω√

3ξa4
. (4)

G4,5 denote the 4,5-dim gravitational constants, respectively, and 
ρ(a) stands for the localized DGP energy density on the brane. No 
specific equation of state P = P (ρ) has been assumed. The ω-term 
(ω is a conserved charge), resembles (but not to be confused with) 
the dark radiation term which is known to accompany RS cos-
mology, is the fingerprint of the underlying RT model. It owes its 
existence to the built-in integrability of the brane’s geodesic equa-
tions of motion. The special limits include:
• DGP limit (ω = 0): The now quadratic eq. (4) admits [13] two 
branches ξ±(a).
• RS limit (ω = 0, G4 → ∞): ξ+(a) becomes proportional to ρ(a), 
so that the FLRW equation is unconventionally sourced [14] by 
ρtotal = �5

2 + 1
3 (4πG5ρ)2.

• GR limit (ω = 0, G5 → ∞): �5 simply decouples.
• RT limit (ω �= 0, G5 → ∞): The bulk is kept non-dynamical, 
�5 �= 0 is optional. Sticking to the original FLRW format, one for-
mally replaces ρ by ρtotal = ρ +ρd , compactly squeezing the entire 
deviation from GR into an effective ‘dark’ component ρd(ρ). The 
latter must of course vanish for ω = 0, obeying

ρd
2
(

8πG4(ρ + ρd) − �5

2

)
= ω2

a8
. (5)

• In the general case [12], one may follow the formalism specified 

by eq. (5), only with modified {ρ�, ρ�
d } replacing {ρ, ρd}, where 

ρ� = ρ − 3ξ/4πG5.

3. Higgs ↔ deSitter interplay

We start with a deceptively naive question: What are the field 
theoretical ingredients necessary for supporting a deSitter brane? It is 
well known that, within the framework of GR, introducing a pos-
itive cosmological constant �4 > 0 will do. However, once a non-
trivial ρd(ρ) enters the game, the answer is not straight forward 
any more. Our goal is to end up with a constant ξ(a). Hence, the 
way to cancel out the ω-term in eq. (4) is to arrange for a suitable 
energy density

ρ(a) = σ + ω

a4
√

�4 − 1
2 �5

. (6)

We are after a tenable field theoretical action capable of (i) Sourc-
ing the above radiation term, (ii) Fixing the otherwise arbitrary 
ω-charge, and (iii) Bypassing fine tuning. This can be achieved by 
introducing a DGP brane localized real scalar field φ(x), subject to 
a particular uniquely prescribed scalar potential V (φ).

The idea is to parametrically express the scalar potential 
V (φ) = ρ − 1

2 φ̇2 and its gradient V ′(φ) = −φ̈ − 3 ȧ
a φ̇ as explicit 

functions of a, and then convert these two expressions into a sin-
gle a-independent differential equation. We take advantage of the 
constant value of ξ(a)2 = 1

3 (�4 − 1
2 �5) to first prepare ρ(a) and 

ρ ′(a) (using Eq. (4)), and ȧ/a (using Eq. (3)) as functions of a. 
With this in hand, one can further express φ̇2 = ρ(a) + 1

6 aρ ′(a)

and φ̈ = − ȧ
6φ̇

(aρ ′(a))′ , and eventually target V (φ) and V ′(φ), as 
functions of the a. Crucial for our discussion is the non-linear 

differential equation that emerges upon the elimination of the 
a-parameter. It reads

1

4
W ′(φ)

2 = −k

√
3

ω

√
�4 − 1

2
�5W (φ)

3
2 + �4

3
W (φ) , (7)

where W (φ) = V (φ) − σ . Counter intuitively, the exact analytic 
solution is surprisingly familiar

V (φ) = σ + λ2
(
φ2 − v2

)2
(8)

A restricted Higgs potential has made its appearance

λ2 = 3k2

16ω

√
�4 − 1

2
�5 , λ2 v2 = �4

12
, (9)

σ(λ, v) = �4

8πG4
+

√
3

4πG5

√
�4 − 1

2
�5 ≡ σ0 . (10)

It consistently generalizes the special RT special case [15]. Note 
that the Higgs potential is a necessary but not a sufficient ingredi-

ent for supporting a de-Sitter brane. Since 3a4
√

�4 − 1
2 �5φ̇

2 = 4ω, 
the initial value φ̇c , required by the 2nd order differential KG equa-
tion, gets fixed by the initial scale factor value ac .

The classical solution of the field equations is given by

a(t) =
√

3k
�4

cosh
√

�4
3 t , φ(t) = v tanh

√
�4
3 t . (11)

The symmetry role played by the so-called proper scalar field 
b(t) = a(t)φ(t)/v is manifest via the equilateral hyperbola a(t)2 −
b(t)2 = 3k/�4. Note that, in the spherically symmetric represen-
tation, the deSitter spacetime is counter intuitively accompanied 
by a non-singular time dependent ‘slinky’ (φ ≡ 0 on the horizon) 
scalar hair [15], thereby avoiding the no-hair theorems of GR.

4. Variant Euclidization

Performing a Wick rotation t → i(τ − τc) implies

a(t) → α(τ ) =
√

3k
�4

cos
√

�4
3 (τ − τc) , (12)

φ(t) → iχ(τ ) = iv tan
√

�4
3 (τ − τc) , (13)

normalized such that α(0) = 0, constituting a circle in the Eu-
clidean phase plane α(τ )2 + β(τ )2 = 3k/�4 (see Fig. 3), where 
b(t) → iβ(τ ). Globally, the de-Sitter imaginary time periodicity 
�τ = 2π

√
3/�4 is now clearly manifest.

Had a(t) → α(τ ) been conventionally accompanied by φ(t) →
χ(τ ), the KG τ -evolution in the Euclidean regime would have been 
governed [16] by V E (χ) = −V (χ). This in turn would give rise 
to the well known upside-down potential V E (χ) = −σ − λ2(χ2 −
v2)2. However, in the present case a(t) → α(τ ) is unconvention-
ally accompanied by φ(t) → iχ(τ ) and hence b(t) → iβ(τ ), so the 
rules of the game are changed dramatically. A closer inspection 
reveals that the KG equation, while keeping its generic form, is ac-
tually being governed by V E (χ) = +V (iχ), translated in our case 
into

V E(χ) = σ + λ2(χ2 + v2)2 (14)

notably abandoning the upside down double well shape.
The scalar potential in the Lorentzian regime and its companion 

in the Euclidean regime are given by eqs. (8), (14), respectively. 
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