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Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum 
gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a 
so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is 
currently analyzed on the basis of the available observational data from gamma-ray bursts and compared 
to predictions of specific modified dispersion relation models. We consider the most general perturbation 
of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic 
spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes 
the existing formulae in the literature and we find that there exist modified dispersion relations causing 
both, one or none of the two effects to first order.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Most information about the properties of gravity are obtained 
by probing the geometry of spacetime through the observation 
of freely falling particles. In order to observe traces of the ex-
pected quantum nature of the gravitational interaction, one option 
is to look for their manifestation in the propagation of particles 
through spacetime, which we observe with telescopes. The theo-
retical prediction of such effects is one branch of quantum gravity 
phenomenology [1]. The pictorial idea why quantum gravity ef-
fects may become visible in this way is the following. Test particles 
probe spacetime on length scales which are inverse proportional 
to their energy. Thus the higher the energy of the particles, the 
smaller the length scale probed. Quantum gravity effects are ex-
pected to become relevant at the Planck scale and hence parti-
cles with energies closer to the Planck energy E pl should interact 
stronger with the quantum nature of gravity than lower energetic 
ones. Therefore, the propagation of high energetic particles through 
spacetime may deviate from their predicted behavior by classical 
general relativity. Since the energy of a particle is observer depen-
dent this pictorial idea needs to be formulated more precisely in 
terms of the particle’s four momentum, instead of its energy, what 
we will do during the derivations of this letter.

As long as a fundamental theory of quantum gravity is not 
available to predict this effect from the scattering between gravi-
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tons and the probe particles such quantum gravity effects can be 
modeled phenomenologically by a modification of the relativistic 
dispersion relation of freely falling point particles, see [2–12] and 
references therein.

Even though the particles we observer have energies below 
the Planck energy, the small effect may accumulate over a long 
particle travel time and become detectable. In particular observa-
tions from high redshift gamma-ray bursts (GRBs) are candidates 
to find traces of Planck scale induced modified dispersion rela-
tions (MDR) [13–16]. One most prominent signature would be a 
so called lateshift observation [17], i.e. an advance or a delay in 
the expected time of arrival of high energetic photons and neutri-
nos from the same source compared to low energetic ones emitted 
at the same time. Recently a preliminary analysis of the ICECUBE 
data for such a lateshift has been performed in [18] as well as an 
analysis of GRBs detected with the Fermi Gamma-Ray Space Tele-
scope [19–21].

To deduce a MDR from the measured time of arrival data of 
neutrinos and photons from GRBs a derivation of the lateshift ef-
fect from a most general modification of the general relativistic 
dispersion relation is required. Usually specific models are as-
sumed and the lateshift is derived for these classes of MDRs [1,
14,15,22–24].

In this letter we derive the redshift and lateshift from an arbi-
trary perturbation of the general relativistic dispersion relation to 
first order in the perturbation. Observation or not-observation of a 
modified redshift or a lateshift effect then directly leads to condi-
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tions the perturbation of the dispersion relation must satisfy to be 
viable. As an interesting insight from the general red- and lateshift 
formula we findMDRs which predict both aforementioned effects, 
only one of them or even none to first order.

2. Dispersion relations as Hamilton functions on spacetime

To derive the lateshift from the dispersion relation of point par-
ticles on spacetime we interpret a dispersion relation as level sets 
of a Hamilton function on the spacetime’s cotangent bundle, as it 
turned out to be a very useful framework to treat MDRs on curved 
spacetimes covariantly [25–27].

The four momentum of a particle is a 1-form P on spacetime 
which can be expanded in local coordinates around a point x as 
P = padxa . The tuple (x, p) denotes the particle’s momentum p at 
the spacetime position x. A dispersion relation is a level set of a 
Hamilton function H(x, p) which determines the particle’s motion. 
This covariant formulation of dispersion relations on curved space-
times has the advantage that it allows to study dispersion relations 
on the basis of the particle’s four momentum without referring to 
the observer dependent notion of a particle’s energy or spatial mo-
mentum.

Homogeneous and isotropic dispersion relations are character-
ized by Hamilton functions with a specific dependence on the 
particle’s positions and momenta. As shown in [26] the most gen-
eral homogeneous and isotropic dispersion relation is given by the 
level sets of the Hamiltonian

H(x, p) = H(t, pt, w), w2 = p2
r χ

2 + p2
θ

r2
+ p2

φ

r2 sin2 θ
, (1)

where χ = √
1 − kr2. Due to the high symmetry the Hamilton 

equations of motion, which determine the propagation of the par-
ticle through spacetime, can partly be solved and reduce to

ṗt = −∂t H, pr = K1

χ
, pθ = 0, pφ = 0,

ṫ = ∂pt H, ṙ = ∂w H
1

w
χ K1, θ = π

2
, φ = 0 ,

(2)

where K 2
1 = w2 is a constant of motion.

3. The perturbed dispersion relation

The most general perturbation of the homogeneous and isotro-
pic general relativistic dispersion relation is given by the level sets 
of

H(t, pt, w) = −pt
2 + a(t)−2 w2 + εh(t, pt, w) . (3)

The perturbation h(t, pt , w) can be an arbitrary function of t , pt

and w , and ε is an arbitrary perturbation parameter. In the con-
text of quantum gravity or Planck scale induced perturbations it 
may be identified with the Planck scale, while other sources of a 
modification of the dispersion relation may require a different per-
turbation parameter. For the calculations below we do not fix the 
origin of the perturbation.

To derive the redshift and lateshift from (3) we use the Hamil-
ton equations of motion

ṫ = −2pt + ε∂pt h , ṙ = χ

(
2w

a2
+ ε∂wh

)
, (4)

and the dispersion relation

−pt
2 + a−2 w2 + εh(t, pt, w) = −m2 . (5)

The time dependence of the scale factor a will from now on only 
be displayed when necessary.

3.1. Redshift

The dispersion relation (5) determines pt as function of t, r and 
w without solving any equation of motion. From the ansatz pt =
p0

t + εp1
t one easily finds

pt(t, w,m) = −
√

m2 + w2

a2
+ ε

h(t, p0
t (t, w,m), w)

2p0
t (t, w,m)

, (6)

and thus for massless particles

pt(t, w,0) = − w

a
− ε

a

2w
h(t, p0

t (t, w,0), w) . (7)

The redshift of a photon which is emitted at time ti with a coordi-
nate time-momentum pt(ti, w) = pt(ti, w, 0) and observed at time 
t f with coordinate momentum pt(t f , w) = pt(t f , w, 0), subject to 
the dispersion relation in consideration then is

z(ti, t f ) = pt(ti, w)

pt(t f , w)
− 1

=
(

a(t f )

a(ti)
− 1

)
− ε

2w2

a(t f )

a(ti)

(
a(t f )

2h(t f , p0
t (t f , w), w)

− a(ti)
2h(ti, p0

t (ti, w), w)

)
. (8)

To zeroth order, as expected, the redshift formula from general 
relativity is recovered, while the first order is determined by the 
perturbation h. In particular the perturbation depends in gen-
eral on the particles spatial coordinate momentum w , which can 
be expressed in terms of the initial coordinate time-momentum 
of the photon pt(ti), since equation (7) can be inverted for 
w(pt , t). Thus photons starting with different initial coordinate 
time-momentum p0

t (ti, w) experience a different redshift. Hence 
a detection of a photon redshift dependent on the initial coor-
dinate time-momentum is a clear signal for a modification of 
the dispersion relation while its absence puts constraints on the 
perturbation. First analyses of possible evidences for an energy de-
pendent redshift have been performed [28,29].

We use the term coordinate time-momentum of a photon here 
instead of energy of a photon to distinguish between the observer 
dependent notion of energy of a particle and the observer inde-
pendent choice of coordinates to describe the particle’s four mo-
mentum.

3.2. Lateshift

To derive the lateshift we use again the Hamilton equations of 
motion (4), to solve for r parametrized in terms of the coordinate 
time

dr

dt
= ṙ

ṫ
= χ w

a
√

a2 m2 + w2

(
1 − ε

1

2(p0
t )2

[
h(t, p0

t , w)

− p0
t ∂pt h(t, p0

t , w) − w∂wh(t, p0
t , w)

])

≡ χ w

a
√

a2 m2 + w2
(1 − ε f (t, p0

t , w)) . (9)

The momentum corresponding to the time coordinate is consid-
ered as function pt = pt(t, w, m) as displayed in (6). Employing 
separation of variables and the perturbative ansatz r = r0 +εr1 the 
following solution can easily be found
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