[Physics Letters B 781 \(2018\) 117–121](https://doi.org/10.1016/j.physletb.2018.03.068)

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Physics Letters B

www.elsevier.com/locate/physletb

A remark on the sign change of the four-particle azimuthal cumulant in small systems

a AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland ^b *Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China*

A R T I C L E I N F O A B S T R A C T

Article history: Received 20 January 2018 Received in revised form 24 March 2018 Accepted 26 March 2018 Available online 29 March 2018 Editor: W. Haxton

The azimuthal cumulants, c_2 {2} and c_2 {4}, originating from the global conservation of transverse momentum in the presence of hydro-like elliptic flow are calculated. We observe the sign change of c_2 ^{4} for small number of produced particles. This is in a qualitative agreement with the recent ATLAS measurement of multi-particle azimuthal correlations with the subevent cumulant method. © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

[\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Experimental results from heavy-ion colliders indicate that a nearly perfect fluid is produced in high energy nucleus–nucleus $(A + A)$ collisions $[1-3]$. One important evidence is the success of hydrodynamics in describing the collective flow phenomena observed in $A + A$, see, e.g., [\[4–9\]](#page--1-0). The hydrodynamical models capture the main features of collective flow measured using different methods [\[10–14\]](#page--1-0). For example, the k-particle azimuthal cumulants, $c_n{k}$, are expected to measure the *real* collective flow v_n by reducing non-flow effects [\[11,12\]](#page--1-0). The experimental results from the Large Hadron Collider (LHC) show that the elliptic flow coefficients obtained with four, six and eight-particle standard cumulant method are overlapping in both Pb + Pb and p + Pb collisions, indicating that the observed long-range (in rapidity) azimuthal correlations may be due to the same physical origin in both large and small systems [\[15–17\]](#page--1-0).

A new subevent cumulant method was recently developed to further suppress the non-flow contribution from jets [\[18\]](#page--1-0). The ATLAS measurement [\[19\]](#page--1-0) demonstrated that the two-subevent and three-subevent cumulants are less sensitive to short-range non-flow effects than the standard cumulant method. The three-subevent method shows that $c_2\{4\}$ in proton–proton and $p + Pb$ collisions changes sign at lower multiplicity than the standard method, indicating that the long-range multi-particle azimuthal correlations persist to even lower multiplicities. On the other hand, many theoretical efforts have been made to understand these measurements, which are basically classified as final state $[20-30]$ or initial state phenomena $[31-40]$, see $[41]$ for a recent review.

In this paper we calculate the two-particle and the four-particle azimuthal cumulants

$$
c_2{2} = \left\langle e^{i2(\phi_1 - \phi_2)} \right\rangle, \tag{1}
$$

$$
c_2{4} = \left\langle e^{i2(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle - 2\left\langle e^{i2(\phi_1 - \phi_2)} \right\rangle^2, \tag{2}
$$

originating from the conservation of transverse momentum in the presence of hydro-like elliptic flow.

Recently we calculated the effect of transverse momentum conservation (TMC) only [\[42\]](#page--1-0), and we observed that

$$
c_2\{k\} \sim \frac{1}{N^k},\tag{3}
$$

Corresponding authors.

<https://doi.org/10.1016/j.physletb.2018.03.068>

0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license [\(http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/)). Funded by SCOAP³.

E-mail addresses: bzdak@fis.agh.edu.pl (A. Bzdak), glma@sinap.ac.cn (G.-L. Ma).

with $c_2{k} > 0$ for the calculated $k = 2, 4, 6, 8$.¹ Here *N* is the number of produced particles subjected to TMC. As shown in [\[42\]](#page--1-0), the contribution from TMC to $(c_2\{k\})^{1/k}$ is of the order of a few percent even for a relatively large number of particles. In this paper we extend our analysis and calculate analytically *c*2{2} and *c*2{4} originating from TMC applied to particles characterized by the hydro-like elliptic flow. We observe that *c*2{4} changes sign for small *N* in a qualitative agreement with the recent ATLAS measurement of multi-particle azimuthal correlations with the subevent cumulant method [\[18,19\]](#page--1-0).

2. Calculation

We calculate the effect of TMC applied to particles characterized by the hydro-like elliptic flow. This can be modeled by a single particle distribution given bv^2

$$
f(p,\phi) = \frac{g(p)}{2\pi} \left[1 + 2v_2(p) \cos(2\phi - 2\Psi_2) \right],
$$
\n(4)

where $v_2(p)$ is the elliptic flow at a given transverse momentum $p = |\vec{p}|$. Ψ_2 is the event plane, which we further put to zero.

2.1. Two particles

Following calculations presented, e.g., in Refs. [\[42–48\]](#page--1-0), the two-particle distribution with TMC is given by

$$
f_2(p_1, \phi_1, p_2, \phi_2) = f(p_1, \phi_1) f(p_2, \phi_2) \frac{N}{N-2} \exp\left(-\frac{(p_{1,x} + p_{2,x})^2}{2(N-2) \langle p_x^2 \rangle_F} - \frac{(p_{1,y} + p_{2,y})^2}{2(N-2) \langle p_y^2 \rangle_F}\right),\tag{5}
$$

where $p_x = p \cos(\phi)$, $p_y = p \sin(\phi)$ and using Eq. (4) we have

$$
\left\langle p_{x}^{2} \right\rangle_{F} = \frac{1}{2} \left\langle p^{2} \right\rangle_{F} \left(1 + \bar{\bar{v}}_{2,F} \right),
$$

$$
\left\langle p_{y}^{2} \right\rangle_{F} = \frac{1}{2} \left\langle p^{2} \right\rangle_{F} \left(1 - \bar{\bar{v}}_{2,F} \right),
$$

(6)

where

$$
\bar{\bar{v}}_{2,F} = \frac{\langle v_2(p)p^2 \rangle_F}{\langle p^2 \rangle_F} = \frac{\int_F g(p)v_2(p)p^2 d^2p}{\int_F g(p)p^2 d^2p}.
$$
\n(7)

The integrations over the full phase space are always denoted by *F* .

Our goal is to calculate

$$
\langle e^{2i(\phi_1 - \phi_2)} \rangle |_{p_1, p_2} = \frac{\int_0^{2\pi} f_2(p_1, \phi_1; p_2, \phi_2) e^{2i(\phi_1 - \phi_2)} d\phi_1 d\phi_2}{\int_0^{2\pi} f_2(p_1, \phi_1; p_2, \phi_2) d\phi_1 d\phi_2} = \frac{U_2}{D_2},\tag{8}
$$

where *e*2*i(φ*1−*φ*2*)* is calculated at a given transverse momenta *p*¹ and *p*2.

To calculate the numerator we expand $\exp(-A) \approx 1 - A + A^2/2$ and neglect all higher terms in Eq. (5). As shown in Ref. [\[42\]](#page--1-0) the first contribution from TMC, which is not vanishing at $v_2 = 0$, appears in $A^2/2$. We obtain³

$$
\frac{U_2}{4\pi^2} = v_2(p_1)v_2(p_2) - \frac{p_1^2v_2(p_2)[2v_2(p_1) - \bar{v}_{2,F}] + p_2^2v_2(p_1)[2v_2(p_2) - \bar{v}_{2,F}]}{2(N-2)\langle p^2 \rangle_F [1 - (\bar{v}_{2,F})^2]} + \frac{p_1^4v_2(p_2)[v_2(p_1)\{4 + 3(\bar{v}_{2,F})^2\} - 4\bar{v}_{2,F}] + p_2^4v_2(p_1)[v_2(p_2)\{4 + 3(\bar{v}_{2,F})^2\} - 4\bar{v}_{2,F}]}{8(N-2)^2\langle p^2 \rangle_F^2 [1 - (\bar{v}_{2,F})^2]^2} + \frac{p_1^2p_2^2}{8(N-2)^2\langle p^2 \rangle_F^2 [1 - (\bar{v}_{2,F})^2]^2} + \frac{p_1^2p_2^2}{2(N-2)^2\langle p^2 \rangle_F^2 [1 - (\bar{v}_{2,F})^2]^2}.
$$
\n(9)

To calculate the denominator it is enough to take the first term, exp*(*−*A)* ≈ 1, since the next terms are suppressed by the powers of 1*/N*. In this case we obtain

$$
D_2 = 4\pi^2,\tag{10}
$$

and the first correction (assuming $v_2^2 \ll 1$) is given by $-4\pi^2 \frac{p_1^2+p_2^2}{(N-2)(p^2)_F}$.

The last term of U_2 in Eq. (9), discussed in Ref. [\[42\]](#page--1-0), is driven by momentum conservation and it does not vanish for $v_2 = 0$. It scales like $1/N^2$. The third and the fourth terms of *U* are suppressed also by $1/N^2$ and additionally they are multiplied by v_2^2 , and

¹ For comparison, clusters decaying into *^k* particles result in *^c*2{*k*} ∼ ¹*/Nk*[−]1, see, e.g., Ref. [\[11\]](#page--1-0).

² We neglect v_3 which also contributes to c_2 {2} and c_2 {4} however, its effect is smaller than v_2 .

³ We skip $\frac{g(p_1)}{2\pi} \frac{g(p_2)}{2\pi} \frac{N}{N-2}$ appearing in Eq. (5) since it cancels in the ratio U_2/D_2 .

Download English Version:

<https://daneshyari.com/en/article/8186570>

Download Persian Version:

<https://daneshyari.com/article/8186570>

[Daneshyari.com](https://daneshyari.com)