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We compute the color-planar and complete light quark non-singlet contributions to the heavy quark form 
factors in the case of the axialvector, scalar and pseudoscalar currents at three loops in perturbative QCD. 
We evaluate the master integrals applying a new method based on differential equations for general 
bases, which is applicable for all first order factorizing systems. The analytic results are expressed in 
terms of harmonic polylogarithms and real-valued cyclotomic harmonic polylogarithms.
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Form factors are the matrix elements of local composite opera-
tors between physical states. In perturbative Quantum Chromody-
namics (QCD) these objects play a significant role in determining 
physical observables. In scattering cross-sections, they provide im-
portant contributions to the virtual corrections. The massive form 
factors are of importance for the forward–backward asymmetry of 
bottom or top quark pair production at electron–positron collid-
ers and to static quantities like the anomalous magnetic moment 
of a heavy quark and other processes. They are also of importance 
to scrutinize the properties of the top quark [1,2] during the high 
luminosity phase of the LHC [3] and the experimental precision 
studies at future high energy e+e− colliders [4].

In this letter, we calculate both the color-planar and complete 
light quark non-singlet three-loop contributions to the massive 
form factors for axialvector, scalar and pseudoscalar currents. Our 
results for the vector current, including a detailed account of the 
techniques used in these calculations, will be presented elsewhere 
[5]. The two-loop QCD corrections to the massive vector, axialvec-
tor form factors, the anomaly contributions, and the scalar and 
pseudoscalar form factors were first presented in [6–9]. In [10], an 
independent computation led to a cross-check of the vector form 
factor, giving also the additional O(ε) terms in the dimensional pa-
rameter ε = (4 − D)/2. Recently, the contributions up to O(ε2) for 
all the massive two-loop form factors were obtained in Ref. [11]. 
The color-planar contributions to the massive three-loop form fac-
tor for the vector current have been computed in [12,13] and the 
complete light quark contributions in [14]. The large β0 limit has 
been considered in [15].

* Corresponding author.
E-mail address: peter.marquard@desy.de (P. Marquard).

Our notations follow those used in Ref. [11]. We consider the 
decay of a virtual massive boson of momentum q into a pair of 
heavy quarks of mass m, momenta q1 and q2 and color c and d, 
through a vertex Xcd , where Xcd = �

μ
A,cd, �S,cd and �P ,cd indicates 

the coupling to an axialvector, a scalar and a pseudoscalar boson, 
respectively. Here q2 = (q1 + q2)

2 is the center of mass energy 
squared and the dimensionless variable s is defined by

s = q2

m2
. (1)

The amplitudes take the following general form

ūc(q1)Xcd vd(q2) , (2)

where ūc(q1) and vd(q2) are the bi-spinors of the quark and the 
anti-quark, respectively. We denote the corresponding UV renor-
malized form factors by F I , with I = A, S, P . They are expanded in 
the strong coupling constant αs = g2

s /(4π) as follows

F I =
∞∑

n=0

( αs

4π

)n
F (n)

I . (3)

The following generic forms for the amplitudes can be found by 
studying the general Lorentz structure. For the axialvector current, 
it can be cast as

�
μ
A,cd = −iδcd

[
aQ

(
γ μγ5 F A,1 + 1

2m
qμγ5 F A,2

)]
, (4)

where aQ is the Standard Model (SM) axialvector coupling con-
stant. Likewise, for the scalar and pseudoscalar currents, one has

�cd = �S,cd + �P ,cd = −m

v
δcd

[
sQ F S + ip Q γ5 F P

]
, (5)
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Fig. 1. The color-planar topologies.

Fig. 2. The nl topologies.

where v = (
√

2G F )−1/2 is the SM vacuum expectation value of the 
Higgs field, with G F being the Fermi constant, sQ and p Q are the 
scalar and pseudoscalar couplings, respectively. Finally, to obtain 
the unrenormalized form factors, we multiply appropriate projec-
tors as provided in [11] and perform the trace over the color and 
spinor indices. For later purpose we denote by Nc the number of 
colors, and nl and nh are the number of light and heavy quarks, 
respectively. We will set nh = 1 in the following.

Since we use dimensional regularization [16], one important 
point is to define a proper description for the treatment of γ5. 
Both the color-planar and complete nl contribution belong to the 
so-called non-singlet case, where the axialvector or pseudoscalar 
vertex is connected to open heavy fermion lines. Hence, both 
γ5-matrices appear in the same chain of Dirac matrices, which al-
lows us to use an anti-commuting γ5 in D space–time dimensions, 
with γ 2

5 = 1. This is implied by the well-known Ward identity,

qμ�
μ,ns
A,cd = 2m�ns

P ,cd , (6)

which in terms of the form factors, takes the form

2F ns
A,1 + s

2
F ns

A,2 = 2F ns
P . (7)

Here ns denotes the non-singlet contributions. For convenience, we 
introduce the kinematic variable [17]

x =
√

q2 − 4m2 − √
q2√

q2 − 4m2 + √
q2

↔ s = q2

m2
= − (1 − x)2

x
, (8)

which we use in the following. In particular, we focus on the Eu-
clidean region, q2 < 0, corresponding to x ∈ [0, 1[.

The Feynman diagrams for the different form factors are gen-
erated using QGRAF [18], the color algebra is performed us-
ing Color [19], the output of which is then processed using
Q2e/Exp [20,21] and FORM [22,23] in order to express the dia-
grams in terms of a linear combination of a large set of scalar in-
tegrals. These integrals are then reduced using integration by parts 
identities (IBPs) [24,25] with the help of the program Crusher
[26] to obtain 109 master integrals (MIs), out of which 96 appear 
in the color-planar case. In the color-planar limit, the families of 
integrals can be represented by eight topologies, shown in Fig. 1, 
whereas for the complete light quark contributions, three more 
topologies, cf. Fig. 2, are required.1

1 Only sub-topologies with a maximum of eight propagators contribute.

Finally, the master integrals have to be computed. For this we 
use the method of differential equations, see also [27–30]. The cor-
responding differential equations are obtained from the IBP rela-
tions. Here a central question is whether the corresponding linear 
system of differential equations is first order factorizable or not. 
Using the package Oresys [31], based on Zürcher’s algorithm [32,
33], we have proved that the present system is indeed first order 
factorizable in x-space. Without any need to choose a special basis, 
one is therefore in the position to solve the system in terms of it-
erated integrals of whatsoever alphabet, cf. Ref. [5] for details. The 
differential equations are solved order by order in ε successively, 
starting at the leading pole terms ∝ 1/ε3. The successive solu-
tions in ε contribute to the inhomogeneities in the next order. We 
compute the master integrals block-by-block, where for an m × m
system a single inhomogeneous ordinary differential equation of 
order m or less is obtained, which we solved using the variation 
of constant. The other m − 1 solutions result from the former so-
lution immediately. The boundary conditions can be determined 
by a separate calculation at x = 1. The calculation is performed by 
intense use of HarmonicSums [34–40], which uses the package
Sigma [41,42]. We finally have checked all master integrals nu-
merically using FIESTA [43–45].

In the present case, the emerging harmonic polylogarithms 
stem from the inhomogeneities, adding further letters which result 
from the rational coefficients in the differential equations. They are 
obtained by partial fractioning as the k-th powers of letters, k ∈ N, 
which have to be transformed to the letters by partial integration 
in case. This method has some relation to the method of hyper-
logarithms [46,47]. One obtains up to weight w = 6 real-valued 
iterated integrals over the alphabet

1

x
,

1

1 − x
,

1

1 + x
,

1

1 − x + x2
,

x

1 − x + x2
, (9)

i.e. the usual harmonic polylogarithms (HPLs) [48] and their cy-
clotomic extension [34], including the respective constants in the 
limit x → 1, i.e. the multiple zeta values (MZVs) [49] and the cy-
clotomic constants [34,50]. In case of the iterated integrals we 
apply the linear representation. For a numerical implementation 
the use of the shuffle algebra [51] implemented in Harmonic-
Sums reduces the number of functions accordingly. In the MZV 
and cyclotomic case there are proven reduction relations to weight 
w = 12 [49] and w = 5 [50], respectively, which we have used. 
The 64 cyclotomic constants which appear up to w = 5 reduce 
to 18. At w = 6 124 cyclotomic constants remain at the mo-
ment. Note that there are more conjectured relations, cf. [52], 
based on PSLQ [53]. If these conjectured relations are used, only 
multiple zeta values remain as constants in all form factors us-
ing our real representation for the cyclotomic harmonic polyloga-
rithms. The analytic result for the different form factors in terms 
of HPLs and cyclotomic HPLs [34,48] can be analytically contin-
ued outside x ∈ [0, 1[ by using the mappings x → −x, x → (1 − x)/
(1 + x) on the expense of extending the cyclotomy class in cases 
needed.

The UV renormalization of the form factors has been performed 
in a mixed scheme. We renormalize the heavy quark mass and 
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