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We propose a new fast method to match factorization theorems applicable in different kinematical 
regions, such as the transverse-momentum-dependent and the collinear factorization theorems in 
Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition 
and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using 
the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate 
the unknown complete matched cross section from an inverse-error-weighted average. The method is 
simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated 
with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, 
such as the nonperturbative ones, should be added for a proper comparison with experimental data). 
Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell–
Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–
Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can 
straightforwardly be extended to match any (un)polarized cross section differential in other variables, 
including multi-differential measurements.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Motivation

In processes with a hard scale Q and a measured transverse 
momentum qT , for instance the mass and the transverse momen-
tum of an electroweak boson produced in proton–proton collisions, 
the qT -differential cross section can be expressed through two dif-
ferent factorization theorems. For small qT � Q , the transverse-
momentum-dependent (TMD) factorization applies and the cross 
section is factorized in terms of TMD parton distribution/frag-
mentation functions (TMDs thereafter) [1–3]. The evolution of the 
TMDs resums the large logarithms of Q /qT [4–6]. For large qT ∼
Q � m, with m a hadronic mass of the order of 1 GeV, there is 
only one hard scale in the process and the collinear factorization 
is the appropriate framework. The cross section is then written 
in terms of (collinear) parton distribution/fragmentation functions 
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(PDFs/FFs). In order to describe the full qT spectrum, the TMD and 
collinear factorization theorems must properly be matched in the 
intermediate region.

Many recent works on TMD phenomenology and extractions 
of TMDs from data did not take into account the matching with 
fixed-order collinear calculations for increasing transverse momen-
tum (see e.g. Refs. [7,8]). Such a matching is one of the compelling 
milestones for the next generation of TMD analyses and more gen-
erally for a thorough understanding of TMD observables [9]. In 
addition, it has recently been shown that the precisely measured 
transverse-momentum spectrum of Z boson at the LHC does not 
completely agree with collinear-based NNLO computations,1 hint-
ing at possible higher-twist contributions at the per-cent level. 
Thus having a reliable estimation of the matching uncertainty from 
power corrections is very opportune.

1 See https://gsalam .web .cern .ch /gsalam /talks /repo /2016 -03 -SB +SLAC -SLAC -
precision .pdf.
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This work contributes to this effort by introducing a new ap-
proach, whose main features are its simplicity and its easy and fast 
implementation in phenomenological analyses (fits and/or Monte 
Carlo event generators). In addition, this scheme provides an au-
tomatic estimate of the theoretical uncertainty associated to the 
matching procedure. All these are crucial features in light of the 
computational demands of global TMD analyses and event genera-
tion for the next generation of experiments [10–13].

As we will show, it yields compatible results with other main-
stream approaches in the literature, such as the improved Collins–
Soper–Sterman (CSS) scheme [14] (see also Ref. [15]), which re-
fines the original CSS subtraction approach [16–19]. The latter, in 
simple terms, is based on adding the TMD-based resummed (W ) 
and collinear-based fixed-order (Z) results, and then subtracting 
the double-counted contributions (A). The improved CSS (iCSS) 
approach enforces the necessary cancellations for the subtraction 
method to work.

Other methods have been introduced in the framework of soft-
collinear effective theory by using profile functions for the re-
summation scales in order to obtain analogous cancellations to 
those in the iCSS method, see e.g. Refs. [20–23]. One can also 
find other schemes to match TMD and collinear frameworks, e.g. 
Refs. [24–26].

In the scheme we introduce, no cancellation between the TMD-
based resummed contribution, W , and the collinear-based fixed-
order contribution, Z , is needed. We simply avoid the double 
counting (and therewith the subtraction of A) by weighting both 
contributions to the matched cross section, with the condition that 
the weights add up to unity. This renders the computation of the 
matched cross section very easy to implement. Clearly, the weights 
cannot be arbitrary and should ensure that, in their respective 
domains of applicability, the predictions of both factorization the-
orems are recovered.

Both factorized expressions can be seen as approximations of 
the unknown, true theory, up to corrections expressed as ratios of 
the relevant scales (power corrections, in the following). In TMD 
factorization the power corrections scale as a power of qT /Q , 
whereas in collinear factorization they scale as a power of m/qT , 
up to further suppressed nonperturbative contributions [1]. We 
simply implement an estimate of these uncertainties in the well-
known formula of an inverse-error weighting – or inverse-variance 
weighted average – of two measurements to obtain our matched 
predictions. As such, it also automatically returns an evaluation of 
the corresponding matching uncertainty.

The method we propose can straightforwardly be extended to 
match any (un)polarized cross section differential in other vari-
ables, including for instance event shapes, multi-differential mea-
surements or double parton scattering with a measured transverse 
momentum [27].

This paper is organized as follows: in Sec. 2 we describe both 
factorization theorems for low and high transverse momenta, and 
how they are combined with the inverse-error-weighting method. 
In Sec. 3 we show through several examples (Z , W , H0 and Drell–
Yan lepton-pair production) how the method works. In Sec. 4 we 
compare the numerical results to the iCSS subtraction scheme. Fi-
nally, Sec. 5 gathers the conclusions and briefly discusses the ap-
plicability of our method to other processes.

2. The inverse-error weighting method

The main idea behind the scheme we are proposing is to use 
the power corrections to the involved factorization theorems in or-
der to directly determine to which extent the approximations can 
be trusted in different kinematic regions, and to use this in order 
to bridge the intermediate region obtaining the complete spec-

trum. In this context, an inverse-error weighting is conceptually 
the simplest method one could think of.

Let us have a closer look at the TMD and collinear factorization 
theorems and their regions of validity, by considering a cross sec-
tion dσ differential in at least the transverse momentum qT of an 
observed particle. For qT � Q , the TMD factorization can reliably 
be applied and the qT -differential cross section can generically be 
written as

dσ(qT , Q )

∣∣∣
qT �Q

= W (qT , Q ) +
[

O
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Q

)a

+ O
(

m

Q

)a′]
dσ(qT , Q ) , (1)

where W is the TMD approximation of the cross section dσ , the 
scale m is a hadronic mass scale on the order of 1 GeV and Q
is the hard scale in the process, for instance the invariant mass of 
the produced particle. As qT increases, the accuracy of the TMD ap-
proximation decreases and the power corrections are increasingly 
relevant until the expansion breaks down as qT approaches Q .

On the contrary, for large qT ∼ Q � m, the collinear factor-
ization theorem applies and the qT -differential cross section can 
generically be written as

dσ(qT , Q )

∣∣∣
qT ∼Q �m

= Z(qT , Q ) + O
(

m

qT

)b

dσ(qT , Q ) , (2)

where Z is the collinear approximation of the full cross section dσ . 
Z is calculated at a fixed-order in the strong coupling constant αs . 
For qT ∼ Q � m, Z is a good approximation of the full cross 
section, but as qT decreases the accuracy of the collinear approxi-
mation diminishes, which finally breaks down as qT approaches m.

Armed with both these factorization theorems, valid in differ-
ent and (sometimes) overlapping regions, the full qT spectrum can 
be constructed through a matching scheme. Such a scheme must 
make sure that the result agrees with W in the small qT region 
and with Z in the large qT region, and that there is a smooth 
transition in the intermediate region.

As announced, in this paper we introduce a new scheme, the 
inverse-error weighting (InEW for short), where the power correc-
tions to the factorization theorems are used to quantify the trust-
worthiness associated to the respective contributions, and thus 
employed to build a weighted average. The resulting matched dif-
ferential cross section over the full range in qT is given by

dσ(qT , Q ) = ω1W (qT , Q ) + ω2Z(qT , Q ) , (3)

where the normalized weights for each of the two terms are

ω1 = �W −2

�W −2 + �Z−2
, ω2 = �Z−2

�W −2 + �Z−2
, (4)

with �W and �Z being the uncertainties of both factorization 
theorems generated by their power corrections. The uncertainty on 
the matched cross section simply follows from the propagation of 
these (uncorrelated) theory uncertainties:

�dσ = 1√
�W −2 + �Z−2

= �W �Z√
�2

W + �2
Z

dσ

≈ �W �Z√
�2

W + �2
Z

dσ , (5)

where {�W , �Z} = {�W , �Z}dσ , and in the last step we have 
replaced the unknown true cross section dσ by its estimated 
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