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Following similar approaches in the past, the Schrödinger equation for three neutrino propagation in 
matter of constant density is solved analytically by two successive diagonalizations of 2 × 2 matrices. 
The final result for the oscillation probabilities is obtained directly in the conventional parametric form 
as in the vacuum but with explicit simple modification of two mixing angles (θ12 and θ13) and mass 
eigenvalues. In this form, the analytical results provide excellent approximation to numerical calculations 
and allow for simple qualitative understanding of the matter effects.
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The MSW effect [1] for the neutrino propagation in matter 
attracts a lot of experimental and theoretical attention. Most re-
cently, the discussion is focused on the DUNE experiment [2].

On the theoretical side, a large number of numerical simula-
tions of the MSW effect in matter with a constant or varying 
density has been performed. Although, in principle, sufficient for 
comparing the theory predictions with experimental data, they do 
not provide a transparent physical interpretation of the experimen-
tal results. Therefore, several authors have also published analytical 
or semi-analytical solutions to the Schrödinger equation for three 
neutrino propagation in matter of constant density, in various per-
turbative expansions [3–5]. The complexity of the calculation, the 
transparency of the final result and the range of its applicability 
depend on the chosen expansion parameter.

In this short note we solve the Schrödinger equation in mat-
ter with constant density, using the approximate see-saw structure 
of the full Hamiltonian in the electroweak basis. This way one can 
diagonalize the 3 × 3 matrix by two successive diagonalizations of 
2 × 2 matrices (similar approaches have been used in the past, in 
particular in Refs. [4] and [5]). We specifically have in mind the 
parameters of the DUNE experiment but our method is applica-
ble for their much wider range. The final result for the oscillation 
probabilities is obtained directly in the conventional parametric 
form as in the vacuum but with modified two mixing angles and 
mass eigenvalues,1 similarly to the well known results for the 
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1 The results of this paper have been presented as private communication by one 
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two-neutrino propagation in matter. The three neutrino oscillation 
probabilities in matter have been presented in the same form as 
here in the recent Ref. [6], where the earlier results obtained in 
Ref. [5] are rewritten in this form. The form of our final results can 
also be obtained after some simplifications from Ref. [4]. Our ap-
proach can be easily generalized to non-constant matter density by 
dividing the path of the neutrino trajectory in the matter to layers 
and assuming constant density in each layer.

The starting point is the Schrödinger equation

i
d

dx
ν = Hν (1)

where H is the Hamiltonian in matter. In the electroweak basis it 
reads

H = U

⎛
⎜⎜⎝

0 0 0

0
�m2�

2E 0

0 0 �m2
a

2E

⎞
⎟⎟⎠ U † +

⎛
⎝ V (x) 0 0

0 0 0
0 0 0

⎞
⎠ (2)

The matrix U is the neutrino mixing matrix in the vacuum. The 
mass squared differences are defined as �m2� ≡ m2

2 − m2
1 (≈ 7.5 ×

10−5 eV2) and �m2
a ≡ m2

3 − m2
1 (≈ ±2.5 × 10−3 eV2, positive sign 

is for normal mass ordering and negative sign for inverted one). 
Here V (x) is the neutrino weak interaction potential energy V =√

2G F Ne (Ne is electron number density) and we take it in this 
section to be x-independent. The neutrino oscillation probabilities 
are determined by the S-matrix elements

Sαβ = T e−i
∫ x f

x0
H(x)dx (3)
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For a constant V and in order to obtain our results in the same 
form as for the oscillation probabilities in the vacuum, it is conve-
nient to rewrite the S-matrix elements as follows:

Sαβ = e−iUmHmU †
m(x f −x0) = Ume−iHm L U †

m (4)

The matrix Hm is the Hamiltonian in matter in the mass eigenstate 
basis:⎛
⎝ H1 0 0

0 H2 0
0 0 H3

⎞
⎠ (5)

and the Um is the neutrino mixing matrix in matter. Defining 
φ21 = (H2 −H1)L and φ31 = (H3 −H1)L, we can write

Sαβ =
⎡
⎣Um

⎛
⎝ 1 0 0

0 e−iφ21 0
0 0 e−iφ31

⎞
⎠ U †

m

⎤
⎦ (6)

Here we neglect irrelevant overall phase, e−iH1 L . The neutrino 
transition probabilities do not depend on the overall phase of the 
S matrix.

The remaining task is to find the eigenvalues of H and the mix-
ing matrix Um:

H = UmHmU †
m (7)

It is convenient to do it in two steps, first calculating the hamilto-
nian in a certain auxiliary basis. This way, to an excellent approx-
imation, we can diagonalize the 3 × 3 matrix by two successive 
diagonalizations of the 2 × 2 matrices.

The auxiliary basis [7,8] is defined by the following equation

H′ = U aux†HU aux and S = U auxe(−iH′L)U aux† (8)

where

U aux = O23U δO13 (9)

and the rotations Oi j are defined by the decomposition of the mix-
ing matrix U in the vacuum (see eq. (2)) as follows:

U = O23U δO13U δ∗O12

=
⎛
⎝ c13c12 c13s12 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ c13s23

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c13c23

⎞
⎠

(10)

where

U δ =
⎛
⎝ 1 0 0

0 1 0
0 0 eiδ

⎞
⎠ (11)

(c12 ≡ cos θ12, s12 ≡ sin θ12 etc.).
The matrices Oi j are orthogonal matrices. It is more convenient 

to rewrite the matrix U in another form

U → Ũ = U · U δ = O23U δO13O12

=
⎛
⎝ c13c12 c13s12 s13

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ c13s23eiδ

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c13c23eiδ

⎞
⎠

(12)

Using eqs. (2), (8) we obtain

H′ = OT
13U δ∗OT

23 HO23U δO13

=

⎛
⎜⎜⎜⎝

V c2
13 s12c12

�m2�
2E s13c13 V

s12c12
�m2�

2E (c2
12 − s2

12)
�m2�

2E 0

s13c13 V 0 �m2
ee

2E + V s2
13

⎞
⎟⎟⎟⎠ , (13)

�m2
ee = c2

12�m2
a + s2

12(�m2
a − �m2�) (14)

The term s2
12

�m2�
2E has been subtracted from the diagonal ele-

ments; it gives an overall phase to the S-matrix and according to 
the comments after eq. (6) is irrelevant.

The definition of �m2
ee coincides with one of the definitions of 

the effective mass squared differences measured at reactor experi-
ments [9,10].

This matrix has a see-saw structure, with the (13), (31) ele-
ments much smaller than the (33) element and can be put in an 
almost diagonal form by two rotations

Om T
12 O′ T

13 H′ O′
13Om

12 =
⎛
⎝

H1 0 0

0 H2 0

0 0 H3

⎞
⎠ (15)

≡

⎛
⎜⎜⎝

0 0 0

0
�m2

21
2E 0

0 0
�m2

31
2E

⎞
⎟⎟⎠ +H1

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ (16)

After the first rotation we have

O′T
13H′O′

13

=
⎛
⎜⎝

sin2 θ ′
13

�m2
ee

2E + cos2(θ13 + θ ′
13)V cos θ ′

13 s12c12
�m2�

2E 0

cos θ ′
13 s12c12

�m2�
2E (c2

12 − s2
12)

�m2�
2E sin θ ′

13 s12c12
�m2�

2E

0 sin θ ′
13 s12c12

�m2�
2E cos2 θ ′

13
�m2

ee
2E + sin2(θ13 + θ ′

13)V

⎞
⎟⎠

(17)

where

sin 2θ ′
13 = εa sin 2θ13√

(cos 2θ13 − εa)2 + sin2 2θ13

, (18)

and

εa = 2E V

�m2
ee

(19)

We can safely neglect the (23), (32) elements which are generated 
after the first rotation (see Appendix A) and diagonalize the re-
maining 2 × 2 sub-matrix with the second rotation

sin 2θm
12 = cos θ ′

13 sin 2θ12√
(cos 2θ12 − ε�)2 + cos2 θ ′

13 sin2 2θ12

,

where ε� = 2E V

�m2�
(cos2(θ13 + θ ′

13) + sin2 θ ′
13

εa
) . (20)

The eigenvalues of H are

H2 −H1 ≡ �m2
21

2E

= �m2�
2E

√
(cos 2θ12 − ε�)2 + cos2 θ ′

13 sin2 2θ12, (21)
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