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We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which 
an axionic inflaton couples to pure Yang–Mills gauge fields. We find that the tensor-to-scalar ratio r is 
naturally bounded from below. This bound originates from the finiteness of the number of metastable 
branches of vacua in pure Yang–Mills theories. Details of the model can be probed by future cosmic 
microwave background experiments and improved lattice gauge theory calculations of the θ-angle 
dependence of the vacuum energy.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Cosmic inflation is a successful framework in explaining many 
distinguished features of our Universe, including its flatness and 
the origin of primordial density perturbations. There are, however, 
a plethora of inflationary models proposed in the literature, and 
we ultimately need to turn to observations for guidance, to con-
vincingly answer the question of exactly which inflationary model 
describes our Universe.

Future detection of primordial tensor modes in comic mi-
crowave background (CMB) radiation would be ideal for this pur-
pose. The size of primordial tensor modes is quantified by the 
tensor-to-scalar ratio r, and when combined with the observed 
value of the scalar spectral index ns , these two parameters severely 
constrain models of inflation. This therefore provides an exciting 
opportunity for narrowing down possible models, especially be-
cause values of r ∼ 10−3 are expected to be within reach in next-
generation CMB measurements (see e.g. Ref. [2]).

The goal of this paper is to study the prediction for tensor 
modes of the recently-proposed inflationary model of pure natu-
ral inflation [1]. This is arguably the simplest model of inflation 
consistent with the current observational data. It is defined within 
conventional low-energy effective field theory and is technically 
natural, i.e. stable under quantum corrections.

The model is given by an axionic inflaton φ coupling to four-
dimensional pure Yang–Mills gauge fields:

LφF F = 1

32π2

φ

f
εμνρσ TrFμν Fρσ , (1)
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where f is the decay constant and the dimensionless combination 
θ := φ/ f plays the role of the θ -angle of the Yang–Mills theory. 
Below we choose the Yang–Mills gauge group to be SU (N) for sim-
plicity.

The inflaton potential V (φ) is determined by the dynamics of 
the pure Yang–Mills theory. For our purposes, it is useful to pa-
rameterize the potential in the form

V (φ) = M4

[
1 − 1(

1 + (φ/F )2
)p

]
. (2)

Here, M and F are two parameters which have dimensions of 
mass, and the exponent p > 0 is a dimensionless parameter. The 
parameter F plays the role of the effective decay constant.

This potential is motivated by the holographic computation of 
Ref. [3], which gives the parameters M and F to be

M ≈ √
N	, F ≈ N f , (3)

where 	 is the dynamical scale of the Yang–Mills theory. We de-
fine the parameter γ by

F = πγ N f . (4)

As we will see later, γ ≈ O (1). For our purposes, we use γ and 
the power p to parameterize the strong-coupling dynamics of the 
Yang–Mills theory.1

1 The holographic result in Ref. [3] gives p = 3. We will not be restricted to this 
specific value; see Ref. [1].
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Fig. 1. The values of ns and r predicted by the model for the number of e-folds 
Ne = 50, 60 and for p = 1, 2, 3, 4, 6. The light (dark) blue region represents the 95% 
(68%) CL allowed region by Planck [6] and BICEP2/Keck Array [7]. F/MPl = 10, 5, 1
are indicated by dots (from top to bottom). This plot is the same as that in Fig. 3 of 
Ref. [1], except for the choice of the values of p. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

The potential of Eq. (2) takes approximately the quadratic form 
V (φ) ∼ φ2 for φ � F , but it begins to deviate from this form as 
φ/F becomes larger. Note that this potential is rather different 
from the cosine potential used in the original model of natural in-
flation [4,5], which is motivated by the instanton approximation—
as explained in Ref. [1], the cosine potential is not theoretically 
valid for pure Yang–Mills theory, and is also disfavored by the re-
cent observations by Planck [6] and BICEP2/Keck Array [7].

The parameter M in Eq. (2) is determined by the overall size 
of the scalar perturbation once the other parameters, F and p, are 
given. While the power spectrum depends on all these parameters, 
in the range of F and p considered in this paper, we find

M ∼ 1016 GeV. (5)

This implies that to discuss the tensor-to-scalar ratio r and spec-
tral index ns , only the effective decay constant F and the power p
are relevant. When we vary these parameters, we obtain a range 
of r and ns which are in impressive agreement with the current 
observational constraints; see Fig. 1.

We see that the value of the spectral index ns is mostly consis-
tent with observation regardless of the values of F and p. On the 
other hand, the size of the tensor-to-scalar ratio r strongly depends 
on the value of F . Our main interest in this paper is to figure out 
the expected size of the tensor-to-scalar ratio r, or equivalently the 
value of F , in the present model.

If F is large, F � MPl, we expect to have a large value of r, and 
hence tensor modes can be observationally found in the near fu-
ture. Here, MPl � 1.22 × 1019 GeV is the Planck scale. In the limit 
that F is very large, F � MPl, the prediction of the model ap-
proaches that of chaotic inflation [8] with the quadratic potential 
V (φ) = m2φ2/2, which is now excluded at about a 3σ level [6,7]. 
However, as discussed in our previous paper [1], this extreme limit 
is not available in our framework, since the validity of low-energy 
effective field theory puts a constraint F � O (MPl).

In the opposite limit of small F , the tensor-to-scalar ratio r is 
small; in fact, it can be tiny if F is much smaller than MPl. At 
first sight, there seems to be no issue in going to this extreme 
parameter region. The predicted value of ns is consistent with cur-
rent experimental bounds, as can be seen in Fig. 1. The necessary 
amount of inflation, Ne ≈ 50–60, can be obtained if the initial 
value of the inflaton field is large, φ � F . However, there is a rea-
son to think that such a parameter region may not be available 
in the model. This has to do with the fact that the potential in 

Eq. (2) is motivated by the holographic computation in the large N
limit, and it should not be taken at face value once we taken into 
account the finite N effects.

To explain this point (in the language of quantum field theory), 
let us first recall the salient features of the large N analysis [9,10].

In addition to the axion coupling in Eq. (1), we have the kinetic 
term for the gauge fields, so that the total Lagrangian density is 
given by

L = N

[
− 1

4λ
Tr(F μν Fμν) + 1

32π2

φ

N f
εμνρσ TrFμν Fρσ

]
. (6)

Here, we have factored out the overall coefficient N , and λ = g2N
is the ’t Hooft coupling with g being the gauge coupling. In the 
large N limit [11], the parameter 1/N plays the role of an expan-
sion parameter. Physical observables are expected to be smooth 
functions of λ and φ/(N f ), which are kept finite in taking the 
limit.

From this large N scaling argument, we expect that the poten-
tial of φ, i.e. the θ -angle dependence of the vacuum energy, takes 
the form

V (φ) = N2	4V

(
φ

N f

)
+ O (N0), (7)

where V(x) is a smooth function of O (N0) when written in terms 
of x. This potential, however, does not respect the expected sym-
metry under φ → φ + 2π f . In the large N limit, this transforma-
tion induces an infinitesimal shift in the argument of function V, 
which can be an invariance of the potential V (φ) only if V is 
constant. However, this is inconsistent with perturbative large N
calculation, which shows otherwise.

The way around this problem is to realize that the potential is 
multi-valued [10]. In particular, we have many different (in general 
metastable) branches corresponding to the shift φ → 2π f n with n
integer. The correct vacuum energy, for example, is then given by 
the minimal values among these branches

V min(φ) = N2	4minnV

(
φ + 2π f n

N f

)
, (8)

so that the invariance of physics under φ → φ + 2π f is recovered.
Let us now come to finite values of N . In the large N analysis 

the value of N is taken to be infinity, so that we have an infinitely 
many branches, i.e. n runs over all integers in Eq. (8).2 However, 
the situation can be different for a finite value of N—if n is taken to 
be of order N then the shift φ → φ + 2π f n changes the argument 
of V(φ/(N f )) by an O (1) amount, which can preserve the value of 
the function V(φ/(N f )). If this happens, there will be only a finite 
number of metastable branches, with each branch being periodic 
with the period of O (2π N f ).

That a finite number (order O (N)) of branches exists is dis-
cussed in the analysis of the chiral Lagrangian for QCD (with fla-
vors) in Ref. [10]. The analysis there is justified for small quark 
masses, whereas here we are interested in the opposite limit of 
pure Yang–Mills theory, in which the quark masses are taken to be 
infinitely large.

In the case of pure Yang–Mills theory, we expect that the num-
ber of metastable branches is N (so that the periodicity of the 
θ -dependent potential in a single branch is 2π N , not 2π ). This 
is suggested for example by the analysis of softly-broken N = 1
supersymmetric Yang–Mills theories (see Refs. [13,14]). More re-
cently, this 2π N periodicity of the θ angle has been made manifest 

2 See, e.g., Refs. [3,12–16] for related discussion in the context of inflation.



Download English Version:

https://daneshyari.com/en/article/8186635

Download Persian Version:

https://daneshyari.com/article/8186635

Daneshyari.com

https://daneshyari.com/en/article/8186635
https://daneshyari.com/article/8186635
https://daneshyari.com

