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We construct a set of quasi-local measurement operators in 2D CFT, and then use them to proceed the 
quantum energy teleportation (QET) protocol and show it is viable. These measurement operators are 
constructed out of the projectors constructed from shadow operators, but further acting on the product 
of two spatially separated primary fields. They are equivalently the OPE blocks in the large central charge 
limit up to some UV-cutoff dependent normalization but the associated probabilities of outcomes are 
UV-cutoff independent. We then adopt these quantum measurement operators to show that the QET 
protocol is viable in general. We also check the CHSH inequality a la OPE blocks.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum entanglement has been studied intensively in the past 
few years in quantum field theory (QFT) and many-body systems, 
partly inspired by the Ryu–Takayanagi formula of the holographic 
entanglement entropy [1,2], partly inspired by the new quan-
tum order in the many-body condensed matter systems [3,4], and 
moreover by the connection of these twos [5,6]. There are usu-
ally two ways to characterize the quantum entanglement. One is 
to evaluate the entanglement entropy or Rényi entropies of the 
reduced density matrix of a quantum state. The other way is to 
treat the entanglement of quantum state as the resources for some 
quantum information tasks, which will help to enhance the effi-
ciency of the similar tasks in the classical computation and com-
munication, and to reduce the complexity. There are many classic 
examples in the earlier development of quantum information sci-
ences, such as quantum teleportation [7], dense coding [8] and so 
on. However, most of these examples are performed for the few-
qubit systems, and seldom for the QFT or many-body systems.

In this work, we would like to explore the possibility of defining 
the quantum measurement operators in one of the special QFTs, 
i.e., the conformal field theory (CFT), so that one can generalize 
the quantum protocols for qubit systems to the ones in CFT. Some 
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earlier effort along this direction can be found in [9] for free QFT. 
Here our CFT is in general interacting theory and can be seen as 
the critical phases of many-body systems. Thus, our scheme can be 
thought as a precursor to perform the quantum information tasks 
in critical systems. For simplicity, we will apply our quantum mea-
surement operators in CFT to one particular quantum information 
task, the so-called quantum energy teleportation (QET) [10–13], for 
which Alice will send the energy (not the quantum state) to Bob 
by LOCC. Note that a holographic version for holographic CFT has 
been studied in [14] based on the so-called surface/state corre-
spondence [15,16], which states that each (space-like) hypersurface 
in AdS space corresponds to a quantum state in the dual CFT.

We propose that the OPE blocks formulated in [17] can be used 
as a set of local quantum measurements in the weak sense, i.e., 
just holds for ground state but not in the operator sense. The OPE 
blocks can be shown to be equivalent to be the projector opera-
tors Pk ’s with k labeling the outcomes, which are constructed in 
the shadow formalism [18], acting on the product of two separated 
local primary operators, i.e., O i(x1)O j(x2). The projectors Pk ’s are 
not local but smear over the entire spacetime. However, in 2D CFTs 
they can be reduced to quasi-local ones over the causal diamond 
subtended by the interval [x1, x2]. The reason of the weak sense is 
that the set of OPE blocks cannot be complete. This is easy to see 
by the fact that the set of projectors constructed by shadow for-
malism is by construction complete, but the associated OPE blocks 
cannot be. Despite that, this is good enough to adopt them for the 
QET protocol by either in the weak sense or adopting the view of 

https://doi.org/10.1016/j.physletb.2018.05.007
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2018.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:wzguo@cts.nthu.edu.tw
mailto:fengli.lin@gmail.com
https://doi.org/10.1016/j.physletb.2018.05.007
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.05.007&domain=pdf


62 W.-Z. Guo, F.-L. Lin / Physics Letters B 782 (2018) 61–68

acting Pk ’s on the excited state O i(x1)O j(x2)|0〉 initially prepared 
by Alice for QET, where |0〉 is CFT’s ground state.

As an application of these OPE block quantum measurement, 
we adopt them to proceed the QET protocols in 2D CFTs. We find 
that such QET task is viable. This encourages the experimental re-
alization of QET in 2D critical systems such as the edge states of 
Quantum Hall Effect. Moreover, we also use these measurement 
operators to show that one cannot violate CHSH inequality.

In the following the paper is organized as follows. In section 2
we will review the issues of POVM in QFT, and then propose the 
OPE blocks as the set of quasi-local quantum measurements in 2D 
CFTs. In section 3 we adopt the OPE blocks as the quantum mea-
surements for the QET protocol and calculate the energetics at each 
step. We first show that the QET will fail in the infinite time limit, 
and then show that the sub-leading correction beyond this limit 
will then yield QET by appropriate quantum feedback control. Fi-
nally, we give a toy example for demonstration of viable QET in 
CFT. We then conclude our paper in section 4 and end with a dis-
cussion on Bell inequality of the OPE blocks.

2. Projection measurements in CFT

A quantum measurement process can be described by a set of 
positive operators {Ek} whose sum is the identity operator, i.e.,∑

k

Ek = I . (1)

Then, the probability of obtaining the outcome k when measuring 
the state |ψ〉 is

pk = 〈ψ |Ek|ψ〉 . (2)

This is known as the positive operator-valued measure (POVM). 
A special case is when the positive operators Ek ’s are all pro-
jection operators, i.e., E†

k E j = δk, j Ek , then the normalized post-
measurement state of outcome k is

|ψk〉 = Ek|ψ〉√〈ψ |Ek|ψ〉 . (3)

This is the so-called projective-valued measure (PVM).
Moreover, the POVM can also be constructed by introducing the 

auxiliary probe coupled to the state |ψ〉, so that the operator Ek

can be obtained as follows: acting on the total system by the time 
evolution operator U (t), and then projecting it onto the probe’s 
eigenstate |k〉p , i.e.,

Ek := M†
k Mk (4)

with

Mk := p〈k|U (t)|0〉p, (5)

where the subscript p denotes “probe”. It is easy to see that (1) is 
satisfied by U †U = 1.

Based on the above procedure, one may construct the POVM 
in quantum field theory (QFT) and then implement them on some 
quantum tasks, see for example [13] on constructing POVM of free 
QFT for quantum energy teleportation. However, in practical the 
construction of POVM for interacting QFT is not so straightforward 
due to nontrivial operator mixings.

2.1. OPE block in CFT

Instead, in d-dimensional CFTs there is a set of projection op-
erators constructed by the shadow operator formalism [18], and 
explicitly they are given by

Pk = �(�k)�(d − �k)

πd�(�k − d
2 )�( d

2 − �k)

∫
Dd X Ok(X)|0〉〈0|Õk(X), (6)

where �(x) is the Gammas function and �k is the conformal di-
mension of Ok . These projectors are complete if k runs over all 
primaries, i.e.,∑
k∈all primaries

Pk = IC F T . (7)

We have introduced the shadow operator2,3

Õk(X) :=
∫

DdY
1

(−2X · Y )d−�k
Ok(Y ), (8)

so that it can be used to show that

Pi P j = δi, j P i . (9)

In the above, we adopt the notation of embedding space for the 
coordinate X , i.e., for CFT in d-dimensions, the “embedding space” 
is Rd,2. The dimensional space is obtained by quotienting the null 
cone X2 = 0 and by the rescaling X ∼ λX , λ ∈ R. In particular, we 
can choose the Poincare section such that X := (X+, X−, Xμ) =
(1, xμxμ, xμ) such that

−2X1 · X2 = (x1 − x2)
2 .

Even though P j ’s are projection operators, however, it is not 
local and thus we cannot use them to implement local quantum 
measurements which are required in many quantum information 
tasks such as quantum (energy) teleportation. Fortunately, for 2D 
CFTs the P j becomes a quasi-local operator when acting on the 
following states

O 1(x1)O 2(x2)|0〉, (10)

where |0〉 is the ground state of CFT. In this case, the integration in 
(6) and (8) is over the casual diamond DA subtended by the inter-
val [x1, x2], i.e., x1 < x2 w.l.o.g. For simplicity, we will only consider 
the case with O 1 = O 2 := O i the primary operator of conformal 
dimension (hi, ̄hi). We can then view the state (10) as some quasi-
local excitation prepared by Alice, and then she further performs a 
local projection measurement within her causal domain for some 
quantum information task.

Indeed, the post-measurement state is related to the OPE block 
defined in [17], i.e.,

Pk Oi(x1)Oi(x2)|0〉 = x−2hi−2h̄i
12 ciik Bk(x1, x2)|0〉 , (11)

where ciik is the OPE coefficient and xmn := xm − xn . By this defi-
nition, it is straightforward to relate the conformal block gk(u, v)

and the two-point correlator of the OPE blocks, i.e.,

2 In (6), we adopt the notation of embedding space for the coordinate X , i.e., 
for CFT in d-dimensions, the “embedding space” is Rd,2. The dimensional space 
is obtained by quotienting the null cone X2 = 0 by the rescaling X ∼ λX , λ ∈ R. 
In particular, we can choose the Poincare section such that X := (X+, X−, Xμ) =
(1, xμxμ, xμ) such that

−2X1 · X2 = (x1 − x2)2 .

3 The “conformal integral” in (8) is defined by [18]

∫
Dd X f (X) = 1

Vol GL(1,R)+

∫
X++X−≥0

dd+2 X δ(X2) f (X) .
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