
Physics Letters B 782 (2018) 83–86

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Rastall gravity is equivalent to Einstein gravity

Matt Visser

School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 December 2017
Received in revised form 8 May 2018
Accepted 9 May 2018
Available online xxxx
Editor: M. Cvetič
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Rastall gravity, originally developed in 1972, is currently undergoing a significant surge in popularity. 
Rastall gravity purports to be a modified theory of gravity, with a non-conserved stress–energy tensor, 
and an unusual non-minimal coupling between matter and geometry, the Rastall stress–energy satisfying 
[T R]ab;b = λ

4 gab R;b . Unfortunately, a deeper look shows that Rastall gravity is completely equivalent to 
Einstein gravity — usual general relativity. The gravity sector is completely standard, based as usual on 
the Einstein tensor, while in the matter sector Rastall’s stress–energy tensor corresponds to an artificially 
isolated part of the physical conserved stress–energy.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Rastall gravity [1], despite its somewhat mixed 45-year history, 
is currently undergoing a significant surge in popularity. Some 19 
closely related articles have appeared so far in 2017 [2–20]. (See 
also [21–23].)

Unfortunately, as I shall argue below, Rastall gravity is com-
pletely equivalent to standard Einstein gravity — general relativity 
— all that is going on is that one is artificially splitting the physical 
conserved stress–energy tensor into two non-conserved pieces.

Historically, in 1972 Rastall tentatively suggested [1] that it 
might prove profitable to consider a covariantly non-conserved 
stress–energy tensor, one with ∇b[T R]ab �= 0. In particular, he then 
suggested the phenomenological model ∇b[T R]ab = F a , where F a

is some vector field vanishing in flat spacetime.
A (somewhat weak) plausibility argument then led him to con-

sider ∇b[T R]ab ∝ gab∇a R . Ultimately Rastall posited the existence 
of a constant λ such that for Rastall’s non-conserved stress energy 
tensor

∇b[T R]ab = λ

4
gab ∇b R. (1)

(For future convenience, I have chosen a slightly different normal-
ization than Rastall.) The full Rastall equations of motion (EOM) 
are then [1]:

Gab + 1

4
λ R gab = κ [T R]ab, (2)
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whence

(λ − 1) R = κ T R. (3)

So already at this stage it is clear that the case λ = 1 is special.
There are numerous and extensive claims in the literature that 

Rastall’s approach amounts to introducing a deep non-minimal 
coupling between gravity and matter. Unfortunately, as we shall 
see below, in terms of the underlying physics, this approach proves 
simply to be a content-free rearrangement of the matter sector. As 
gravity, there is absolutely nothing new in this proposal.

Similar comments can be found in a little-known 1982 paper 
by Lindblom and Hiscock [24]. As per the discussion below, in this 
particular 35-year-old article the authors emphasize the construc-
tion of a conserved stress–energy tensor, algebraically built from 
the Rastall stress–energy [24].1

2. Rastall gravity in vacuum

First, we observe that in vacuum Rastall’s equation reduces to

Gab + 1

4
λ R gab = 0; (λ − 1) R = 0. (4)

If λ �= 1 this implies

1 Where Lindblom and Hiscock differ from the current analysis is by introduc-
ing the explicit (and quite radical) assumption that laboratory equipment couples 
only to the non-conserved Rastall stress–energy, not to the conserved stress–energy 
tensor [24]. This allows them to place stringent phenomenological constraints on 
Rastall’s λ parameter: |λ| < 10−15. I will not be exploring this particular route in 
the current article.
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Gab = 0; (5)

whereas if λ = 1 one obtains

Gab = � gab. (6)

This is either the standard vacuum Einstein EOM, or at worst the 
Einstein EOM + (arbitrary cosmological constant). The vacuum so-
lution is simply an Einstein spacetime. (For λ �= 1 this vacuum 
degeneracy between the Rastall and Einstein theories was already 
noted by Rastall some 45 years ago [1].)

3. Adding matter: generic case (λ �= 1)

Since R = κ T R

λ−1 , we construct the geometrical Einstein tensor in 
terms of Rastall’s stress–energy as

Gab = κ

(
[T R]ab + 1

4

λ

1 − λ
T R gab

)
. (7)

Therefore, if we choose to define

Tab = [T R]ab + 1

4

λ

1 − λ
T R gab, (8)

then this quantity is covariantly conserved. Thus it is this stress 
energy that should be considered physical, and in terms of this 
physical stress–energy tensor

Gab = κ Tab (9)

is the usual Einstein equation.
We can of course invert this construction using

T = T R + λ

1 − λ
T R = 1

1 − λ
T R; (10)

so that

T R = (1 − λ)T . (11)

We see

[T R]ab = Tab − 1

4
λ T gab. (12)

That is, from the Rastall stress–energy [T R]ab , (and knowledge of 
the Rastall coupling λ), one can always reconstruct the physical 
stress–energy Tab , and vice versa. So, (at least for λ �= 1), all that 
is going on is that Rastall has simply mis-identified the physi-
cal stress–energy. In terms of the true physical conserved stress–
energy Tab one just has standard Einstein gravity.2 Indeed, one can 
easily jump back and forth using equations (8) and (12). Some-
times this very simple observation is hidden very deeply in very 
technical, very specific, and very turgid calculations.3

4. Adding matter: special case (λ = 1)

This is the only case that is even mildly interesting. Ironically, it 
was already considered (and rejected) by Rastall 45 years ago [1]. 
For λ = 1 the Rastall EOM reduce to

Gab + 1

4
Rgab = κ[T R]ab; T R = 0; (13)

2 Note the existence of an automatic implied consistency condition for Rastall 
stress–energy: ∇[c∇b[T R]a]b = 0. This might at first glance look “deep”; unfortu-
nately it is not “deep”. Observe that one trivially has ∇[c∇b[T R]a]b = λ

4 ∇[c∇a] R = 0.
3 For traceless matter, such as electromagnetic stress–energy, the whole process 

trivializes, [T R]ab → Tab .

or alternatively

Rab − 1

4
Rgab = κ[T R]ab; T R = 0. (14)

So in this λ = 1 special case situation Rastall matter has to be 
traceless. In terms of the physical stress–energy this is simply

Gab + 1

4
R gab = κ

(
Tab − 1

4
T gab

)
, (15)

or alternatively

Rab − 1

4
R gab = κ

(
Tab − 1

4
T gab

)
. (16)

These equations imply that the trace-free part of the Einstein ten-
sor (which equals the trace-free part of the Ricci tensor) is pro-
portional to the trace-free part of the stress–energy tensor. This is 
equivalent to

Gab = κTab + �gab. (17)

That is, for λ = 1, Rastall gravity is just ordinary Einstein gravity 
plus an arbitrary cosmological constant.

Formally this is the same as so-called “unimodular gravity” [27–
32].4 Note that for λ = 1 we have5

[T R]ab = Tab − 1

4
T gab; T R = 0. (18)

So when reconstructing the physical stress–energy one simply has

Tab = [T R]ab + 1

4
T gab; T R = 0. (19)

That is, from the physical stress–energy Tab you can (uniquely) 
construct Rastall stress–energy [T R]ab . In contrast, from the stress–
energy Rastall [T R]ab you can reconstruct the physical stress–
energy Tab , up to an a priori unknown trace T . Consequently, even 
for λ = 1, Rastall gravity is a trivial rearrangement of the matter 
sector in Einstein gravity; as gravity there is absolutely nothing 
new.

5. Relation of Rastall to trace-free stress–energy

In terms of the usual stress–energy, let us define the trace-free 
stress–energy as

[T tf]ab = T ab − 1

4
T gab. (20)

While this trace-free stress–energy tensor certainly shows up in 
unimodular gravity [27–32], it has a much wider domain of appli-
cability.

Naturally, this trace-free stress–energy, [T tf]ab , is not (generi-
cally) covariantly conserved, indeed we have ∇b[T tf]ab =
− 1

4 gab∇b T , but this covariant non-conservation is not at all a sur-
prise, it is simply due to the way it has been defined.

Furthermore, since T ab − [T tf]ab = 1
4 T gab , we can always 

rewrite the Rastall stress–energy of equation (12) as a simple 
linear interpolation between the physical and the trace-free stress–
energy tensors:

4 Observe that “unimodular gravity” should more properly called “specified mod-
ulus gravity”, meaning that det(g) → ω, where ω is an externally specified and 
non-dynamical scalar density.

5 Even for the special case λ = 1, there is still an automatic implied consistency 
condition for the Rastall stress–energy: ∇[c∇b[T R]a]b = 0. This might again at first 
glance look “deep”; it isn’t. We again trivially have ∇[c∇b[T R]a]b = 1

4 ∇[c∇a] R = 0.
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