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We present supergravity realizations of chromo-natural inflationary models. We show that by using 
superpotentials with “imaginary” holomorphic functions of the inflaton one can obtain effective theories 
of inflation that are also consistent truncations of the original supergravity models.
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1. Introduction

Natural inflationary models have the nice property of protecting 
the required flatness of the inflationary potential against radiative 
corrections by means of an approximate shift symmetry [1]. For 
instance, in the case of an axion field φ acquiring a potential from 
instanton corrections, the symmetry can be broken in a controlled 
way:

V (φ) = �4
(

1 − cos
φ

fφ

)
. (1)

While these models have been studied for many years (see [2]
for a review), only recently they have been generalized to Super-
gravity, keeping the stabilization of the other fields under con-
trol [3]. All these models, however, suffer the fact that a greater 
than planckian axion decay constant fφ is needed, which seems 
to be very difficult to embed in string theory [4,5]. Modifications 
of this scenario to solve this problem have been proposed [6], usu-
ally by introducing additional axion fields or by creating conditions 
for a transplanckian evolution of the inflation or by slowing down 
the axion evolution through particle production. This last mecha-
nism has been used in inflationary scenarios involving gauge fields 
[7] and in particular in the so-called chromo-natural inflation sce-
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nario [8], where the axion couples to the topological term of an 
SU(2) triplet of gauge fields:
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∫
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]
.

(2)

If the vector fields acquire an isotropic vacuum expectation value 
during inflation1

AI
0 = 0, AI

a = δ I
a Q (t), (3)

the modification to the axion equations of motion are such that the 
inflaton can be in slow roll also for potentials that would otherwise 
be too steep to support inflation. In addition to the force from the 
axion potential there is in fact a magnetic force proportional to 
gφ , acting as a friction term and hence granting the slow roll of 
the inflaton. While this scenario allows for sub-planckian fφ , the 
number of e-folding that can be obtained depends crucially on gφ , 
which should be sufficiently large [5].

Also this model has been studied for various years and vari-
ous modifications to make it compatible with the observed data 
have been proposed (see for instance [9]). However, a Supergrav-
ity embedding, which is a first step to find its embedding in an 
ultraviolet complete theory of quantum gravity like string theory, 

1 Here and in what follows I, J = 1, 2, 3 are the SU(2) gauge indices of the adjoint 
representation and a = 1, 2, 3 labels the space coordinates xμ = {x0, xa}.
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is still missing. In this note we fill this gap, by providing Su-
pergravity models that consistently reproduce various models of 
chromo-natural inflation as effective theories. We also comment 
on the possible generation of the various ingredients from string 
theory.

2. Natural inflation in Supergravity

The first step in our construction is the embedding of natu-
ral inflationary models in Supergravity. The first example of such 
embedding was provided in [3], where various Supergravity mod-
els have been constructed, leading to effective theories compatible 
with natural inflation. In all the models presented in [3] the su-
perpotential is linear in the goldstino superfield S and the Kähler 
potential is a function of only the real or imaginary part of the 
inflaton superfield 
, so as to avoid the Supergravity η-problem. 
While most of these models do not give consistent truncations to 
the inflaton alone, the sgoldstino acts as a stabilizer, generating a 
large effective mass for the partner of the axion and for itself, so 
that one can produce effective models with an axion potential of 
the form (1).

In what follows we first review and refine the construction 
presented in [3] by building Supergravity models that allow for 
effective theories of natural inflation that are also consistent trun-
cations, i.e. such that solutions to the effective theory equations of 
motion are also exact solutions of the full model. We do this fol-
lowing the ideas presented in [10]. Since we will also be interested 
in models with two light inflaton fields, we introduce two Kähler 
potentials, with the same structure, depending on the inflatons 
i

and on the stabilizers Si as

Ki = 1

2
(
i + 
̄i)

2 + Si S̄ i − b

M2
P

(Si S̄ i)
2. (4)

Introducing canonically normalized fields


i = 1√
2

(αi + i φi) , (5)

we see that the Kähler potentials (4) and consequently the scalar 
σ -models have shift symmetries φi → φi + ci , while the parameter 
b is introduced for stabilization of S at S = 0. We also introduce a 
superpotential that is a linear combination of

W i = Si Fi

(

i

fφ

)
, (6)

where Fi are “imaginary” holomorphic functions, namely they sat-
isfy

Fi(z) = Fi(−z̄). (7)

Whenever these functions can be given in terms of a power series, 
their general expansion is

Fi(z) =
∑

n

an(iz)n, (8)

for an ∈ R. The objective is to have a scalar potential that is even 
in the αi fields so that we can consistently truncate them to zero. 
Given the structure of the Kähler potential (4) and superpoten-
tial (6), the same result can be obtained if all the an coefficients are 
imaginary. This corresponds to the constraint Fi(z) = −Fi(−z̄)
and the extra imaginary factor in Fi can be safely reabsorbed in 
the corresponding Si field, without changing the resulting model. 
Altogether these ingredients give a scalar potential

V = eK/M2
p

(
gij̄ Di W D j̄ W − 3

|W |2
M2

p

)
, (9)

which can be consistently truncated to configurations where Si =
0 = 
i + 
̄i . In fact the scalar potential depends at least quadrat-
ically on the Si fields and it is even with respect to the αi fields, 
i.e.

∂Si V |∗ = ∂αi V |∗ = 0, (10)

where |∗ denotes the evaluation of the quantity at Si = αi = 0. The 
truncated scalar potential is then

V |∗ =
∑

i

∣∣∣∣Fi
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2
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fφ

)∣∣∣∣
2

(11)

and the masses of the other fields along the φi directions are
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p m2

Im Si
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p

f 2
φ

F ′′
i |∗

Fi|∗ . (12)

These are naturally of the order of the Hubble parameter for 
choices of Fi leading to inflationary potentials and for choices of 
b that do not require fine tuning.

To reproduce the scalar potential (1) we can take only the first 
copy of S and 
 fields and set F1|∗ = √

2�2 sin
(

φ1
2 fφ

)
, which 

means

F1(
1) = i
√

2�2 sinh

(
1√
2


1

fφ

)
. (13)

This corresponds to Model 3 in [3], which provides indeed a con-
sistent truncation and not just an effective theory of natural infla-
tion. The other options presented in [3] do not lead to consistent 
truncations, but they give otherwise well-defined effective theo-
ries.

More options are available if one uses non-linear representa-
tions of supersymmetry. As shown in recent times, one has more 
functional freedom when using non-linear supersymmetry in Su-
pergravity and one can therefore accommodate more easily infla-
tionary models, satisfying all consistency requirements [12]. For 
instance one could obtain a scalar potential of the form (11) by 
introducing two constrained chiral superfields X and Y , satisfying 
X2 = 0 = XY = 0 in a model with Kähler potential [13]

K = 1

2
(
1 + 
̄1)

2 + 1

2
(
2 + 
̄2)

2 + X X̄ + Y Ȳ (14)

and superpotential

W = �2 (XF1 + Y F2) . (15)

Actually, one could also constrain the 
i fields by setting X(
i +

̄i) = 0 and produce a direct truncation to the axion fields φi
[14], while at the same time removing the constraint on the Fi
functions to be “imaginary” holomorphic. This in turn would allow 
for an easy embedding as consistent truncations also of the other 
models presented in [3]. The only delicate point in doing this is 
that consistency requires supersymmetry to be broken also at the 
exit of inflation, which implies that Fi �= 0 everywhere in field 
space. This is however a small adjustment that can be easily incor-
porated in the description by adding a sufficiently small constant 
term in (15).
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