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Energy conditions can play an important role in defining the cosmological evolution. Specifically 
acceleration/deceleration of cosmic fluid, as well as the emergence of Big Rip singularities, can be 
related to the constraints imposed by the energy conditions. Here we discuss this issue for f (R)

gravity considering also conformal transformations. Cosmological solutions and equations of state can 
be classified according to energy conditions. The qualitative change of some energy conditions when 
transformation from the Jordan frame to the Einstein frame done is also observed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The observed cosmic acceleration [1–5] points out that a revi-
sion of the cosmological picture, based on the General Relativity 
(GR) and the standard model of particles, is needed. The puzzle 
can be addressed either introducing some form of dark energy or 
assuming modifications of GR. In other words, one can act either 
on the r.h.s. of the Einstein equations by introducing some new 
matter–energy fluid on the l.h.s. modifying or improving geometry. 
In this latter perspective, f (R) gravity is the straightforward mod-
ification of GR where, instead of assuming the gravitational action 
strictly linear in the Ricci scalar R , one takes into account a gen-
eral function of R . The paradigm is that the form of f (R) can be 
fixed according to the cosmological and astrophysical observations 
ranging from local to cosmological scales [6–15].

Beside phenomenological approaches, first principles like en-
ergy conditions, causal structure and the classification of singu-
larities can be considered to restrict the possible forms of f (R)

models [16–23]. In particular, energy conditions, originally for-
mulated in Ref. [24] for GR, can play an important role to fix 
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physically consistent f (R) models [19]. In this debate, the role 
of conformal transformations is crucial because, also if the Jordan 
and Einstein frames are mathematically equivalent, the meaning of 
energy conditions can depend on the frame where they are for-
mulated [25–28]. In particular, the effective pressure and effective 
energy definitions changes according to the frame [31,19–23,29,30]
not only in f (R) gravity but also in other alternative theories of 
gravity [32]. In general, it is important to define the role of further 
geometrical terms in the stress–energy tensor [33–36] and to re-
cast the energy conditions accordingly. Conformal transformations 
and their physical meaning are crucial in the perspective of deter-
mining self-consistent energy conditions. For review, see [37–45].

In this paper, we are considering the role of energy condi-
tions in of f (R) cosmology. In particular, we discuss the conformal 
transformations of the f (R) effective energy–momentum tensor. 
This issue is extremely relevant to address the attractive/repulsive 
behavior of f (R) cosmological models in relation to the equation 
of state.

The paper is organized as follows. In Sec. 2, we consider the 
energy conditions in GR. Their definition for Extended Theories of 
Gravity (ETG) is taken into account in Sec. 3. The effective energy–
momentum tensor, containing curvature terms, is discussed in 
Sec. 4. The relations of this generalized energy–momentum ten-
sor to the cosmological equation of state are considered in Sec. 5. 
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As an example of the above general results, we assume the case of 
power-law f (R) gravity in Sec. 6. Conclusions are drawn in Sec. 7.

2. Energy conditions in General Relativity

Let us start from the Einstein field equations(
Rμν − 1

2
gμν R

)
= κ2

2
Tμν, (1)

where Rμν is the Ricci tensor, R is the Ricci scalar, and Tμν is 
energy–momentum tensor of the matter fields. Such equations de-
termine the causal and geodesic structure of space–time. The Ein-
stein field equations can be written also as

Rμν = κ2

2

(
Tμν − 1

2
T gμν

)
, (2)

where the analog role of matter and geometry into dynamics is 
evident. Due to this aspect, we can deal with geometrodynamics af-
ter Wheeler [46]. Since such equations are addressing the causal 
(metric) and geodesic structure of the space–time, the energy–
momentum tensor has to satisfy some conditions. We can take 
into account a timelike vector uα normalized as uαuα = −1 for the 
signature (− +++). It is the four-velocity of an observer in space–
time, and an arbitrary, future-directed null vector kα , i.e. kαkα = 0. 
The energy conditions are contractions of timelike or null vector 
fields with respect to the Einstein tensor and energy–momentum 
tensor coming from field Eqs. (1) or (2). We obtain four conditions 
[24,47] which are

• The WEC (WEC) which states that at each point of the space–
time p ∈ M the energy–momentum tensor satisfies the in-
equality

Tμνuαuβ ≥ 0 , (3)

for any timelike vector u ∈ TpM. If uα is a four-velocity of 
an observer, then the quantity Tμνuαuβ is the local energy 
density and the inequality (3) is equivalent to the assumption 
that the energy density of a given matter source, measured 
by an arbitrary observer, is non-negative. The canonical form 
of the energy–momentum tensor [24] can be written in the 
orthonormal basis as T μν = diag(ρ, p1, p2, p3) and then, one 
obtains

ρ ≥ 0 , ρ + pi > 0 , i = 1,2,3 . (4)

Following [35], it can be written as

Rμνuμuν ≥ −κ2

4
(ρ −

3∑
i=1

pi) . (5)

• The Null Energy Condition (NEC) considers future-directed 
null vector kμ

Tμνkαkβ ≥ 0 , (6)

from which one gets ρ + pi ≥ 0.
• The Dominant Energy Condition (DEC) states that matter 

flows along timelike or null world lines. By contracting the 
energy–momentum tensor with an arbitrary, future-directed, 
timelike vector fields, the quantity −T μ

ν uν becomes a future-
directed, timelike or null vector field. It is called the matter 
momentum density that a given observer can measure. This 
means that, in any orthonormal basis, the energy dominates 

the other components of the energy–momentum tensor being 
T 00 ≥ |T ij |:
ρ ≥ 0 , ρ ≥ |pi | . (7)

• The Strong Energy Condition (SEC)(
Tμν − 1

2
T gμν

)
uμuν ≥ 0 (8)

is a statement about the Ricci tensor:

Rμνuμuν ≥ 0 , (9)

and together with the Raychaudhuri equation [48–51] gives 
that gravity has to be attractive.

All these considerations are related to standard matter which sat-
isfies regular equations of state and is minimally coupled to the 
geometry. They can be generalized to other theories of gravity as-
suming that at least causal structure is preserved.

3. Energy conditions in Extended Theories of Gravity

Any alternative theory of gravity should be confronted with en-
ergy conditions which assign the fundamental causal and geodesic 
structure of space–time. In particular Extended Theories of Gravity 
(ETGs) [6–8], which are straightforward extensions of the Einstein 
gravity, can be recast in such a way to be dealt under the standard 
of energy conditions. As discussed in [35,36], the field equations of 
any ETG can be written in the form

g(�i)(Gμν + Hμν) = κ2

2
Tμν , (10)

where Gμν = Rμν − 1
2 gμν R is the Einstein tensor, g(�i) is a gen-

eralized coupling with the matter fields which contributes to the 
energy–momentum tensor Tμν . �i represents curvature invariants 
and/or gravitational fields which contributes to the dynamics. Hμν

is a geometric tensor term including all geometrical modifications 
given by the given ETG. General Relativity is recovered assuming 
g(�i) = 1 and Hμν = 0.

The contracted Bianchi identities and the covariant conservation 
of the energy–momentum tensor give the conservation law

∇α Hμν = − κ2

2g2
T μν∇α g , (11)

which is zero if one deals with vacuum and the coupling g has 
a non-diverging value (i.e. Gμν = −Hμν ). For energy conditions in 
ETGs, the combination of Gμν and Hμν is relevant while, in GR, 
one needs only the conditions for the Einstein tensor. Specifically, 
the extended SEC has the form

g(�i)

(
Rμν + Hμν − 1

2
gμν H

)
uαuβ ≥ 0 , (12)

from which one concludes that the condition Rμνuμuν ≥ 0, valid 
for GR, does not guarantee the attractive nature of gravity. In other 
words, also in the case where SEC is valid, one can obtain repulsive 
gravity in ETGs, in particular in f (R) gravity, as discussed in [52].

Physical quantities which are measured by an observer are the 
components of the energy–momentum tensor

T αβ = ρuαuβ + phαβ + �αβ + 2q(αuβ) , (13)

where ρ = Tαβuαuβ and p = 1
3 Tαβhαβ are the energy-density

and the isotropic pressure, respectively. �αβ = (
hασ hβγ −
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