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Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known 
to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat 
geometry in this case represents a QFT which is neither conformal nor supersymmetric. The ‘black’ 
version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we 
first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 
‘black’ non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics 
for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled ‘black’ 
non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like 
relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem 
and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement 
entropy makes a cross-over to the thermal entropy at high temperature.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The entanglement entropy (EE) is a measure of quantum infor-
mation encoded in a quantum system. In particular, for a bipartite 
system the EE of a subsystem A is the von Neumann entropy and 
is defined as S A = −Tr(ρA logρA), where ρA = TrB(ρtot) is the re-
duced density matrix on A obtained by tracing out on B , the com-
plement of A, of the density matrix of the total system ρtot (see, 
for example, [1–7] including some reviews). It is useful for many 
body systems to describe various quantum phases of matter and 
serves as an order parameter for the quantum phase transitions 
which occur near zero temperature [8–12]. The density matrix can 
be carefully defined in the continuum and therefore, EE can be cal-
culated in a QFT in principle using the so-called replica trick (see, 
for example [13]). However, the actual computation can be done 
quite generally only in low dimensional CFTd+1 (d < 2) [3,4]. For 
higher dimensions the computation of EE becomes intractable ex-
cept for some special cases, like free field QFT in three dimensions 
and also for CFT4 [13].

Ryu and Takayanagi [14,15], motivated by the Bekenstein–
Hawking entropy formula, gave a prescription to compute EE in 
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any dimensions using the idea of AdS/CFT [16,17]. According to 
them, the holographic EE (HEE) of the subsystem A in the gravity 
dual is given by [14]

S E = Area(γ min
A )

4G N
(1)

where γ min
A is the d-dimensional minimal area (time-sliced) 

surface in AdSd+2 space whose boundary matches with the 
boundary of the subsystem A, i.e., ∂γ min

A = ∂ A and G N is the 
(d + 2)-dimensional Newton’s constant. The HEE given in (1) has 
been checked [14] to agree with the QFT results in lower di-
mensions. In higher dimensions also they give correct qualitative 
behaviors. In thermodynamics the entropy of a system can be 
increased by injecting energy to the system, where the proportion-
ality constant is given by the inverse of temperature. This leads 
to an energy conservation relation �E = T �S , the first law of 
thermodynamics. An analogous problem was addressed in [18] for 
the EE, i.e., to see how the EE of a certain region grows with the 
increase in energy. Here the EE is computed using AdS/CFT. The 
excited state of a CFT is given by the deformation of AdS whose EE 
can be computed using (1). This is then compared with the time 
component of the boundary stress tensor Ttt or the energy density. 
For a small subsystem A, the total energy is found to be propor-
tional to the increase in EE and the proportionality constant is c/�, 
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where c is a universal constant and � is the size of the subsystem. 
This has been identified with the entanglement temperature in 
analogy with first law of thermodynamics [18]. However, in [19], 
it has been noted that this is not the complete story. Since the first 
law contains more terms here also �E can have a term analogous 
to P�V term. Indeed, by calculating the other components of the 
boundary stress tensor it has been found that �E contains a term 
d/(d +2)Vd�P x for asymptotically AdSd+2 space, where �P x is the 
pressure normal to the entangling surface and Vd is the volume. 
Therefore the analogous entanglement thermodynamical relation 
takes the form [19],

�E = T E�S E + d

d + 2
Vd�P x (2)

In this paper we consider the non-susy D3 brane or, to be 
precise, a finite temperature version of that solution in type IIB 
string theory [20]. It is known that like BPS D3 brane, non-susy 
D3 brane also has a decoupling limit [21,22] and therefore, gives 
a gravity dual of a non-supersymmetric finite temperature gauge 
theory in the decoupling limit. The gauge theory in this case is 
non-conformal. We use this gravity dual to compute the EE of 
the associated QFT from the Ryu–Takayanagi prescription (1). Since 
the non-susy D3 brane in the decoupling limit has an asymptoti-
cally AdS5 geometry, the HEE can be written as a pure AdS5 part 
and additional part which can be thought of as the EE associ-
ated with an excited state. We use Fefferman–Graham coordinate 
to compute the HEE and this helps us to identify the boundary 
stress tensor quite easily [23,24]. Having identified the boundary 
stress tensor we then check that the additional EE of the excited 
state indeed satisfies the first law like thermodynamical relation 
we just mentioned in (2) for small subsystem. We have identified 
the entanglement temperature in this case which is inversely re-
lated to the size of the entangling region by a universal constant 
and also an entanglement pressure normal to the entangling sur-
face. Although non-susy D3 brane we are considering here has a 
naked singularity, one can define a temperature related to one of 
the parameters of the solution. When the parameter takes a par-
ticular value the solution reduces to the standard Schwarzschild 
AdS5 solution and we checked that for that particular value of the 
parameter our results reduce to those obtained in earlier works 
[18]. We also checked that at higher temperature the HEE makes a 
cross-over [25] to the thermal entropy of standard black D3 brane.

The rest of the paper is organized as follows. In section 2, 
we briefly discuss the decoupled geometry of ‘black’ non-susy D3 
brane solution. The Fefferman–Graham coordinate and the com-
putation of HEE is given in section 3. In section 4, we give the 
boundary stress tensors and study the entanglement thermody-
namics. The cross-over of the HEE to Bekenstein–Hawking thermal 
entropy is discussed in section 5. Finally we conclude in section 6.

2. Decoupled geometry of ‘black’ non-susy D3 brane

The ‘black’ non-susy D3 brane solution of type IIB string the-
ory has been discussed in detail in [20] and so we will be brief 
here. The purpose for our discussion here is to fix the notation 
and convention for the computation of HEE in the next section. 
The solution in the Einstein frame takes the form,

ds2 = F1(ρ)−
1
2 G(ρ)−

δ2
8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]

+ F1(ρ)
1
2 G(ρ)

1
4

[
dρ2

G(ρ)
+ ρ2d�2

5

]

e2φ = G(ρ)−
3δ2

2 + 7δ1
4 , F [5] = 1√

2
(1 + ∗)Q Vol(�5), (3)

where the functions G(ρ) and F (ρ) are defined as,

G(ρ) = 1 + ρ4
0

ρ4
,

F1(ρ) = G(ρ)
α1
2 cosh2 θ − G(ρ)−

β1
2 sinh2 θ (4)

Here δ1, δ2, α1, β1, θ , ρ0, Q are the parameters characterizing the 
solution. Now to compare this solution with that given in eq. (6) 
of [20], we note that we have replaced δ by δ2 here and also, the 
function F (ρ) there is related to F1(ρ) by the relation F1(ρ) =
G(ρ)3δ1/8 F (ρ). The parameters α and β there are related to α1

and β1 by the relations α1 = α + 3δ1/4 and β1 = β − 3δ1/4. We 
point out that the parameters are not all independent but they 
satisfy the following relations

α1 − β1 = α − β + 3δ1/2 = 0

α1 + β1 = α + β =
√

10 − 21

2
δ2

2 − 49

2
δ2

1 + 21δ2δ1

Q = (α1 + β1)ρ
4
0 sinh 2θ (5)

Note that the solution has a curvature singularity at ρ = 0 and 
also the metric does not have the full Poincare symmetry ISO(1, 3)

in the brane world-volume directions, rather, it is broken to R ×
ISO(3) and this is the reason we call it ‘black’ non-susy D3 brane 
solution. However, we put black in inverted comma because this 
solution does not have a regular horizon as in ordinary black brane 
but, has a singular horizon. The standard zero temperature non-
susy D3 brane solution given in eq. (1) of [22] can be recovered 
from (3) by simply putting δ2 = 0 and identifying 7δ1/4 as δ there. 
We remark that in spite of the solution (3) has a singular hori-
zon we can still define a temperature as argued in [26] and by 
comparing the expression for temperature there we can obtain the 
temperature of the ‘black’ non-susy D3 brane as,

Tnonsusy =
( −2δ2

(α1 + β1)2

) 1
4 1

πρ0 cosh θ
(6)

From the above expression it is clear that for the reality of the 
temperature the parameter δ2 must be less or equal to zero. It 
is straightforward to check that when δ2 = −2 and δ1 = −12/7
(which implies α1 = β1 = 1 and α1 + β1 = 2), the above solution 
(3) reduces precisely to the ordinary black D3 brane solution and 
the temperature (6) also reduces to the Hawking temperature of 
the ordinary black D3 brane.

From now on we will put α1 + β1 = 2 for simplicity. There-
fore, from the first relation in (5), we have α1 = 1 and β1 = 1. In 
this case, the parameters δ1 and δ2 will be related (see the second 
equation in (5)) by

42δ2
2 + 49δ2

1 − 84δ1δ2 = 24 (7)

The function F1(ρ) given in (4) then reduces to

F1(ρ) = G(ρ)−
1
2 H(ρ), where,

H(ρ) = 1 + ρ4
0 cosh2 θ

ρ4
≡ 1 + ρ4

1

ρ4
(8)

Therefore the Einstein frame metric in (3) reduces to

ds2 = H(ρ)−
1
2 G(ρ)

1
4 − δ2

8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]

+ H(ρ)
1
2

[
dρ2

G(ρ)
+ ρ2d�2

5

]
(9)
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