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We study static kink configurations in a type of two-dimensional higher derivative scalar field theory 
whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around 
arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a 
supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given 
analytically. We also construct a superpotential formalism for finding analytical static kink solutions. 
Using this formalism we first reproduce some existed solutions and then offer a new solution. The 
properties of our solution is studied and compared with those preexisted. We also show the possibility 
in constructing twinlike model in the higher derivative theory, and give the consistency conditions for 
twinlike models corresponding to the canonical scalar field theory.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Kink is the simplest topological defect. It exists in nonlinear 
scalar field theories with at least two degenerated vacua, and has 
been studied in many branches of physics [1]. In the early study 
of kinks, the scalar field theory is assumed to be canonical, and its 
Lagrangian can be written as L0 = X − V (φ). Here X ≡ − 1

2 (∂μφ)2

represents the standard kinetic term. In this simple theory, kink 
solutions can be obtained by choosing suitable scalar potentials. 
Two well-known solutions are the Z2 symmetric φ4 kink and the 
periodic sine-Gordon kink [1].

These two solutions have many differences. For example, the 
sine-Gordon model supports the interesting breather solution, 
while in the φ4 model one can only find an approximation to the 
breather solution called oscillon, which emits radiation [2,3]. The 
oscillon solutions can also be found numerically in many other 
models with higher-order polynomial scalar potentials, such as 
φ6 [4] and φ8 potentials [5]. Another difference between the two 
models lies in their linear perturbation spectra. The φ4 model has 
two bound states: a zero mode and a massive excitation, but the 
sine-Gordon model only has a zero mode. The massive excitation 
of the φ4 model leads to the bounce windows when two kinks 
collide [2].

Recently, with the development of cosmology, many non-
canonical scalar field theories were proposed [6–10]. In a typi-
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cal noncanonical scalar field theory (dubbed as the K-field the-
ory), the Lagrangian is assumed to be an arbitrary function of φ
and X . This theory was originally applied in cosmology [11–13], 
and later was used to construct kink solutions either in two-
dimensional Minkowski space [14–18], or in five-dimensional 
warped space [19–23]. In order to find analytical kink solutions 
in K-field theory, one can use the superpotential method, which 
rewrites the original second-order differential equations into some 
first-order ones by introducing the so-called superpotential (see for 
example Refs. [18–20,22]). The linear perturbation of static K-field 
kinks was systematically investigated in Refs. [18,21].

The Lagrangian of K-field contains only φ and its first-order 
derivative X . It is natural to ask can we extend the K-field La-
grangian by adding the second-order derivatives of φ, such as 
Y ≡ ∂μ∂μφ? In fact, this is not a new idea. The study of higher-
order derivative theories dates back to the nineteenth century [24], 
and the result is now concluded as the Ostrogradski’s theorem, 
which states that all the Hamiltonians of non-degenerate higher 
time derivative theory suffer from linear instabilities (for more de-
tails see Refs. [25,26]). This instability can be avoided in some 
special models whose equations of motion are second order de-
spite the presence of higher-order derivatives in the Lagrangians. 
A well-known example is the Galileon field [27], whose Lagrangian 
takes the following form in 1 + 1 dimensions:

L = ∂μφ∂μφ + α∂μφ∂μφ�φ. (1)

Soliton solutions in Galileon field theory have been explored in 
Refs. [28–32]. Especially, by using a zero-mode argument, the au-
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thors of Ref. [28] showed that the Galileon field cannot give rise to 
static solitonic solutions.

Thus, in order to find static kink solutions in higher deriva-
tive theory, one needs to extend the Galileon theory. In four-
dimensional curved space–time, the most general scalar-tensor 
theory with second-order equations of motion is the Horndeski 
theory [33]. But later it was realized that second-order equation is 
not mandatory for avoiding the Ostrogradski’s instability. The Os-
trogradski’s instability can also be eliminated by introducing con-
straints [34,35], or in multifield models [36]. Nowadays, the most 
general extensions to the Horndeski’s theory are the so-called de-
generate higher-order scalar-tensor (DHOST) theories [37–39].

It is interesting to study the static kink solutions in various 
kinds of higher derivative scalar field theories, and see how the 
higher derivative terms affect the well-known properties of the 
canonical kinks. Some successful examples can be found in [40,
41]. Both works considered the so-called generalized Galileon the-
ory [42], and the corresponding Lagrangian in two-dimensional 
Minkowski space reads

L = f1(φ, X) + f2(φ, X)Y . (2)

In this paper, we extend the works of Refs. [40,41] to a model with 
the following Lagrangian

L = L(φ, X, Y ). (3)

This Lagrangian can be regarded as a simple subclass of the DHOST 
theories, and the corresponding equation of motion reads

Lφ + ∂μ(LX∂μφ) + ∂μ∂μLY = 0. (4)

Here we have defined Lφ ≡ ∂L
∂φ

, and so on. Our aim is to find 
static kink solutions in a two-dimensional Minkowski space–time 
with line element ds2 = −dt2 + dx2.

The paper is organized as follows. In the next section, we firstly 
give a general discussion on the linear stability of an arbitrary 
static solution of Eq. (4). We will show that under some condi-
tions, the perturbation equation can be written as a factorizable 
Schrödinger-like equation, which ensures the stability of the solu-
tion. In Sec. 3, we construct the superpotential formalism corre-
sponding to our model. This formalism is powerful in finding kink 
solutions. As examples, we will apply it to reproduce some of the 
solutions of [40], and then give our own solution. After that, we 
will consider, in Sec. 4, a constrained system. The constraint forces 
the equation of the higher derivative theory taking the same form 
as the one of the canonical theory. In this case, nonlinear terms of 
Y are allowed if some conditions were satisfied. We will also de-
rive the equations that L(φ, X, Y ) has to satisfy in order to be a 
twinlike model of L0. Our results will be summarized in Sec. 5.

2. Linear stability of static configuration

Suppose we have obtained a static solution φc(x) of Eq. (4), 
it is important to consider the behavior of a small perturbation 
δφ(t, x) = ∑∞

n=0 ψn(x)eiωnt around φc(x). The spectrum of ωn can 
be obtained by solving the linear perturbation equation. Obviously, 
a real ωn corresponds to a stable oscillation δφ(t, x), with fre-
quency ω, around φc(x). While, an imaginary ωn corresponds to an 
exponentially growing perturbation, and would destroy the origi-
nal configuration φc(x). Therefore, when ω2

n ≥ 0 holds for all n, we 
say that the static configuration φc(x) is stable against small per-
turbation. Otherwise, φc(x) is unstable.

In Ref. [40], Bazeia et al. analyzed the linear perturbation of 
a model described by the Lagrangian (2). In this section, we will 

consider the linearization of static solution of model (3). To derive 
the linear equation of δφ(t, x), one can expand the action around 
φc(x) up to the second order of the perturbation:

δ(2)L = LXδ(2) X + 1

2
Lφφ(δφ)2 + 1

2
LX X (δ(1) X)2

+ 1

2
LY Y (δY )2 +Lφ Xδφδ(1) X +LXY δ(1) XδY

+ LφY δφδY +O(δφ3). (5)

Here we have defined the following quantities:

δ(1) X = −(∂μδφ)(∂μφ) = −δφ′φ′, (6)

δ(2) X = −1

2
(∂μδφ)(∂μδφ), (7)

δY = ∂μ∂μδφ. (8)

Obviously, the term 1
2LY Y (δY )2 inevitably leads to fourth-order 

derivatives terms in the linear perturbation equation. For simplic-
ity, in this work we only consider the case with LY Y = 0, so that 
the linear perturbation equation is second order. But it does not 
mean that L can only contain a linear term of Y . As we will see 
in Sec. 4, sometimes, LY Y is vanished after the background equa-
tion of motion is considered. In such case, nontrivial higher-order 
terms of Y are allowed, and do not change the final statements of 
this section.

At a first glance, the term LXY δ(1) XδY = −LXY (∂μδφ)×
(∂μφ)∂ν∂νδφ would also lead to a third-order derivative of δφ after 
an integration by parts. However, the higher-order derivative terms 
can be eliminated in the following sense:

LXY δ(1) XδY = −1

2
LXY (∂μδφ)(∂μφ)�δφ

− 1

2
LXY (∂μδφ)(∂μφ)�δφ

= 1

2
δφ∂μ(LXY ∂μφ�δφ) − 1

2
δφ�(LXY ∂μφ∂μδφ)

+ ∂μ(· · · ), (9)

where the last term in the second line is a total derivative term. 
Obviously, the terms that contain ∂μ∂ν∂νδφ are canceled.

In the end, for a static background kink configuration, the 
quadratic Lagrangian density of δφ reads

δ(2)L = 1

2
(LX +L′

XY φ′ +LXY φ′′ + 2LφY )δφ�δφ

+ 1

2
Lφφ(δφ)2 + δφδφ′(1

2
L′

X − 1

2
L′

X Xφ′ 2 −LX Xφ′φ′′

−Lφ Xφ′ − 1

2
L′′

XY φ′ −L′
XY φ′′ − 1

2
LXY φ′′′)

− δφδφ′′(1

2
LX Xφ′ 2 +L′

XY φ′ +LXY φ′′). (10)

By defining the following variables

G = δφ
√

ξ, (11)

z = φ′√ξ, (12)

ξ ≡ LX +L′
XY φ′ +LXY φ′′ + 2LφY , (13)

γ = 1 − φ′ 2

z2

(
2L′

XY φ′ +LX Xφ′ 2 + 2LXY φ′′) , (14)

the quadratic Lagrangian density can be simplified as

δ(2)L = 1

2

{
−G∂2

t G + V(x)G2 + γ GG′′} , (15)
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