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Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. 
A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion 
relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and 
various special limits are discussed.
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The foundational symmetries of General Relativity (GR) include 
diffeomorphisms and local Lorentz transformations. The former 
act on the spacetime manifold, while the latter act in the tan-
gent space. These two types of transformations are partially linked 
through the vierbein, which provides a tool for moving objects 
between the manifold and the tangent space. The proposal that 
Lorentz invariance might be broken in an underlying theory of 
gravity and quantum physics such as strings [1,2] naturally raises 
various questions about the relationship between diffeomorphism 
violation and Lorentz violation and about the associated phe-
nomenological signals. These questions can be studied indepen-
dently of specific models using gravitational effective field theory 
[3]. Here, following a brief summary of the current status and re-
sults, we develop a model-independent framework for studying 
these issues in linearized gravity. This limit provides a compara-
tively simple arena for exploration, and it is crucial for experimen-
tal analyses of gravitational waves and of gravitation in the Newton 
and post-Newton limits.

A generic treatment of Lorentz violation in Minkowski space-
time in the absence of gravity is comparatively straightforward 
using effective field theory [4]. In this context, the role of diffeo-
morphisms and local Lorentz transformations is played by trans-
lations and Lorentz transformations that act globally and combine 
to form the Poincaré group. The two symmetries can be broken 
independently, and a physical breaking of either one can be rep-
resented in terms of nonzero background fields in an effective 
field theory. The breaking of either can be spontaneous or explicit. 
Spontaneous breaking occurs when the background is dynamical, 
which means that it must satisfy the equations of motion and 
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that it comes with fluctuations in the form of Nambu–Goldstone 
modes [5] and possibly also massive modes. In most applications 
of spontaneous breaking, the background satisfies the equations 
of motion in vacuum and can therefore be viewed as the vac-
uum expectation value. In contrast, explicit breaking is a conse-
quence of a prescribed background, which is typically off shell 
and has no associated fluctuations. Much of the phenomenological 
literature investigating Lorentz violation in Minkowski spacetime 
assumes for simplicity that global spacetime translations are pre-
served in an approximately local inertial frame, canonically taken 
to be the Sun-centered frame [6]. This guarantees conservation of 
energy and momentum, so phenomenological signals are restricted 
to violations of the conservation laws for generalized angular mo-
menta. A large body of experimental studies constrains this type 
of Lorentz violation [7].

In the presence of gravity, the situation becomes more in-
volved. One complication arises because diffeomorphisms and local 
Lorentz transformations act on objects in different spaces that can 
be linked via the vierbein, which can relate the corresponding vi-
olations. In the case of spontaneous breaking, for example, the 
vacuum expectation values are on shell and a nonzero background 
on the spacetime manifold implies one in the tangent space and 
vice versa. As a result, diffeomorphism violation occurs if and only 
if local Lorentz violation does [8]. More intuitively, local Lorentz 
violation can be understood as a background direction dependence 
in a local freely falling frame [3]. Transporting this to the space-
time manifold via the vierbein then guarantees the existence of a 
direction dependence on the spacetime manifold and hence diffeo-
morphism violation.

Another complication for gravity concerns conservation laws 
and arises from the difference between spontaneous and explicit 
breaking. In general, a theory invariant under local transforma-
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tions comes with covariantly conserved currents [9]. In sponta-
neous breaking, the full theory remains invariant under the trans-
formations and the symmetry is only hidden [10]. The currents 
remain conserved even though the background is unchanged by 
the transformations because the background fluctuations transform 
in a nonstandard way to compensate. This contrasts with explicit 
breaking, when the current conservation laws fail to hold.

In GR, local Lorentz invariance implies symmetry of the energy–
momentum tensor while diffeomorphism invariance implies its 
covariant conservation [11]. In theories with spontaneous diffeo-
morphism and local Lorentz violation, these current-conservation 
laws are unaffected: an energy–momentum tensor for the full the-
ory remains covariantly conserved and it is always possible to 
make it symmetric [3]. However, if explicit breaking occurs, then 
there is no guarantee that the energy–momentum tensor is ex-
plicitly conserved or symmetric, and as a result a theory with ex-
plicit breaking can be inconsistent or require reformulation within 
Finsler geometry [3,12]. For sufficiently involved models, this sit-
uation can be rescued by the additional modes that appear in 
theories with explicit diffeomorphism and local Lorentz violation 
[13]. These additional modes arise because in explicit breaking it 
becomes impossible to remove all four diffeomorphism degrees of 
freedom and six local Lorentz degrees of freedom from the vier-
bein. In some models, these additional modes can be constrained 
to restore the covariant conservation and symmetry of the energy–
momentum tensor. The additional modes are the counterparts in 
explicit breaking of the Nambu–Goldstone modes appearing in 
spontaneous breaking. Indeed, they can be understood as Nambu–
Goldstone excitations of Stueckelberg fields [14,15].

The above results have several implications for the phe-
nomenology of diffeomorphism and local Lorentz violations in 
gravity. If the breaking is explicit, the challenge lies in establishing 
the consistency of theory and, if achieved, then in determining the 
effects of the additional modes on observational signals. In con-
trast, if the breaking is spontaneous, the Nambu–Goldstone and 
massive fluctuations can play the role of new forces affecting the 
phenomenology and so must be taken into account in analyzing 
experimental signals. Model-independent techniques for this have 
been developed both in the pure-gravity and in the matter-gravity 
sectors [16–26] and applied to obtain model-independent con-
straints on diffeomorphism and local Lorentz violation in gravity 
from a variety of experimental tests [7,27–56].

An alternative model-independent approach to studying both 
spontaneous and explicit diffeomorphism and local Lorentz viola-
tion uses linearized effective field theory for gravity, formulated 
to incorporate gauge and Lorentz violation [46]. In this context, 
gauge transformations are linearized diffeomorphisms of the met-
ric fluctuation. This technique yields an explicit construction and 
classification of the general quadratic Lagrange density in effec-
tive field theory with gauge invariance at linearized level. It also 
permits construction of the general covariant dispersion relation 
and investigation of the properties of the corresponding gravita-
tional modes. These results have been applied to obtain model-
independent constraints on linearized coefficients for Lorentz vio-
lation using gravitational waves [46,51] and tests of gravity at short 
range [52,53]. In the present work, we extend this approach to ex-
plicit gauge breaking. We construct and classify all terms for the 
quadratic Lagrange density in gravitational effective field theory 
with explicit gauge violation, and we derive the corresponding co-
variant dispersion relation required for experimental applications. 
Throughout the work, we adopt the conventions of Ref. [3]: the 
metric signature is +2, the Levi-Civita tensor satisfies ε0123 = +1, 
and parentheses or brackets about indices indicate symmetrization 
or antisymmetrization without numerical factors.

To perform the linearization, we expand the dynamical metric 
gμν in a flat-spacetime background with Minkowski metric, gμν =
ημν +hμν . A generic term of mass dimension d ≥ 2 in the Lagrange 
density for the linearized gravitational effective field theory can 
then be written as

LK(d) = 1
4 hμνK̂(d)μνρσ hρσ , (1)

where K̂(d)μνρσ is the product of a coefficient K(d)μνρσε1ε2...εd−2

with d − 2 derivatives ∂ε1∂ε2 . . . ∂εd−2 . The coefficients
K(d)μνρσε1ε2...εd−2 have mass dimension 4 − d and are assumed 
constant and small. The complete traces of these coefficients con-
trol Lorentz-invariant terms in LK(d) , while the other components 
govern Lorentz violation. To contribute nontrivially to the equa-
tions of motion, the operator K̂(d)μνρσ must satisfy the require-
ment K̂(d)(μν)(ρσ ) �= ±K̂(d)(ρσ )(μν) , where the upper sign holds for 
odd d and the lower one for even d.

The action is invariant under the usual gauge transformations 
hμν → hμν + ∂μξν + ∂νξμ when the condition K̂(d)(μν)(ρσ )∂ν =
±K̂(d)(ρσ )(μν)∂ν holds. Assuming this condition, the operators 
K̂(d)μνρσ can be constructed explicitly, using standard methods 
in group theory [57]. They are found to span three representation 
classes [46]. For the present work, we have extended this construc-
tion by relaxing the requirement of gauge invariance. Decomposing 
the operator K̂(d)μνρσ into irreducible pieces then yields another 
11 representation classes. This shows that a total of only 14 inde-
pendent classes of operators can appear in any linearized gravita-
tional effective field theory, whether or not the Lorentz and gauge 
invariances hold. These 14 classes therefore characterize all phe-
nomenological effects in linearized gravity, including effects on the 
propagation of gravitational waves and in the Newton and post-
Newton limits.

To simplify the notation in what follows, we denote indices 
contracted into a derivative as a circle index ◦, with n-fold con-
tractions denoted as ◦n . With this convention, the generic operator 
K̂(d)μνρσ can be written as K̂(d)μνρσ = K(d)μνρσ◦d−2

. Also, we de-
note the 14 representation classes as indicated in the first column 
of Table 1. To obtain the term in the Lagrange density (1) asso-
ciated to a given class, it suffices to replace K̂(d)μνρσ with the 
operator listed. The second column displays the index symme-
tries of each class using Young tableaux. The Table also lists some 
properties of each class. The third column indicates whether the 
operator is fully gauge invariant, and the fourth column displays 
the handedness under CPT of the associated term in the Lagrange 
density. Each class can occur only for even or for odd d and for d
above a minimal value, as shown in the next column. The final col-
umn lists the total number of independent components appearing 
in the coefficient K(d)μνρσε1ε2...εd−2 for fixed d.

The quadratic approximation L0 to the Lagrange density for the 
Einstein–Hilbert action can conveniently be written in the form

L0 = 1
4εμρακενσβληκλhμν∂α∂βhρσ . (2)

This gauge- and Lorentz-invariant term is constructed from a piece 
of the coefficient s(4)μρανσβ in the first line of Table 1. The com-
plete Lagrange density incorporating all the operators in Table 1
can then be expressed as

L = L0 + 1
4 hμν

∑
K,d

K̂(d)μνρσ hρσ , (3)

where the sum is over all the representation classes K̂(d)μνρσ

shown in Table 1 and also over all allowed dimensions d for each 
class. Larger values of d introduce higher powers of momenta and 
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