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Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-
standing challenge. An approximate description of nuclei can be achieved by separating its short and long 
range structure. This separation of scales stands at the heart of the nuclear shell model and effective 
field theories that describe the long-range structure of the nucleus using a mean-field approximation. 
We present here an effective description of the complementary short-range structure using contact 
terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts 
from experimental data is presented. Regions in the two-body momentum distribution dominated by 
high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The 
amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. 
Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum 
distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The atomic nucleus is one of the most complex systems in 
nature. One of the main challenges in describing nuclei is under-
standing the short interparticle part of the nuclear wave function. 
The challenge stems from the complicated nucleon–nucleon inter-
action and the large density of the nucleus. The latter causes all 
the relevant scales of the system (nucleon size, average distance, 
and interaction range) to be comparable, making effective theo-
retical descriptions very demanding. On the other hand, detailed 
understanding of these short-range correlations (SRCs) is important 
for neutron-star structure and the nuclear symmetry energy [1–4], 
the bound nucleon and free neutron structure functions [5–10], 
neutrino-nucleus interactions and neutrino oscillation experiments 
[11–15], and more.

Current mean-field nuclear theories describe well various static 
properties of nuclei, but fail to describe the dynamic effects of 
SRCs. Ab-initio many-body calculations [16–21] are still limited 
to light nuclei and/or to soft interactions that regulate the short-
range/high-momentum parts of the nuclear wave function. There-
fore, effective theories are still needed to describe medium and 
heavy nuclei and to identify the main physical process at short 
distances [22–25].
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In the last decade there was a significant progress in describing 
SRCs in dilute Fermi systems. It was shown that if the interaction 
range r0 is much shorter than the average interparticle distance d, 
and the scattering length as , a contact theory can be used to de-
scribe the system [26–29]. A series of relations between different 
observables and the probability of finding a particle pair in a close 
proximity emerge. The contact theory was studied in great de-
tail theoretically, and validated experimentally, for ultra-cold Fermi
gases [26–36].

For nuclei, several experimental observations resemble those of 
cold atomic systems [37,38]. However, in nuclei, the short-range 
interaction is about 0.5–1.5 fm, the average distance between nu-
cleons is about 2.5 fm, and the scattering length is about −20 fm 
and 5 fm for the spin-singlet and spin-triplet channels, respec-
tively. Therefore, the possibility to generalize the contact theory to 
nuclear systems is not obvious. Nevertheless, a generalized nuclear 
theory was recently presented which addresses the factorization of 
the nuclear many-body wave function at short distances [39]. Few 
of its predictions were verified, yet more convincing theoretical 
and experimental results must be provided to prove that indeed 
it is adequate for describing nuclear SRCs.

Many features of nuclear SRCs are well known and should be 
properly explained by any candidate theory. Recent scattering ex-
periments indicate that SRC pairs account for 20%–25% of the nu-
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cleons in the nucleus and practically all nucleons with momentum 
above the Fermi momentum (kF ) [40–48]. They are predominantly 
in the form of neutron–proton (np) SRC pairs with large relative 
momentum (k > kF ), and small center-of-mass (c.m.) momentum 
(K < kF ). Here, kF ∼ 255 MeV/c = 1.3 fm−1 is the typical Fermi 
momentum of medium and heavy nuclei. These, and results of 
theoretical studies, indicate that the high-momentum (k > kF ) tail 
of the nuclear momentum distribution is dominated by SRC and 
described using a factorized wave function for the c.m. and rela-
tive momentum distributions of the pairs which results in similar 
two-body densities for different nuclei [22–25,49–54]. For recent 
reviews see [8,55]. Between these well-established properties and 
the generalized contact formalism there is a seemingly unsolved 
tension, as the latter’s predictions involving two-body momen-
tum distributions, are only satisfied for very high momentum, 
k > 3kF ≈ 4 fm−1, and not for lower momentum kF < k < 3kF .

In this work, we will show that the generalized nuclear contact 
formalism can indeed describe SRCs in nuclei also in this lower 
momentum range. A direct agreement with both recent experi-
mental data and with variational Monte Carlo (VMC) calculations 
will be presented. We will also discuss the nontrivial manner in 
which information on SRC is encapsulated in the nuclear two-body 
momentum distributions. The values of the nuclear contacts for 
various nuclei will be extracted using the VMC two-body distri-
butions in coordinate and momentum space, separately, and also 
using experimental data. We find all three approaches to yield con-
sistent values. Last, the VMC one-body momentum distributions 
are compared to the contact-formalism predictions, confirming the 
experimental observation that they are dominated by SRCs for mo-
mentum larger than kF .

Generalized contact theory for nuclei – The original contact the-
ory was formulated for systems with significant scale separation. 
Consequently, the Bethe–Peierls boundary condition can be used, 
leading at short interparticle distance to a factorized asymptotic 
wave-function of the form [29]:

�
ri j→0−−−→ ϕ(ri j)Aij(R i j, {r}k �=i j). (1)

Here ϕ(ri j) is an asymptotic two-body wave function, and Aij is 
a function of the residual A − 2 particle system. The scale sepa-
ration allows replacing the short-range interaction with a bound-
ary condition, and to ignore all partial waves but s-wave, lead-
ing to ϕ(ri j) = (1/ri j − 1/as). In momentum space, this factor-
ized wave function leads to a high momentum tail, valid for 
|as|−1, d−1 � k � r−1

0 , that is given by: n(k) → C/k4, where C =
16π2 ∑

i j〈Aij |Aij〉 is known as the contact.
To generalize this formalism to nuclear systems we need to 

consider two main points: (1) different partial waves might be 
significant, and therefore a sum over all possible nucleon–nucleon 
channels α must be introduced, and (2) as full scale separation 
does not exist, the asymptotic two-body channel wave-functions 
ϕα are taken from the solution of the nuclear zero-energy two-
body problem. Therefore, the factorized asymptotic wave-function 
takes the form

�
ri j→0−−−→

∑
α

ϕα(ri j)Aα
i j(R i j, {r}k �=i j) , (2)

similar to the independent-pair approximation [56], where the in-
dex i j corresponds to pn, pp, and nn pairs [57].

In this work we will consider only the main channels contribut-
ing to SRCs, namely, the pn deuteron channel (� = 0, 2 and s = 1
coupled to j = 1) and the singlet pp, pn, and nn s-wave channel 
(� = s = j = 0). Using Eq. (2), asymptotic expressions for the one-
and two-body momentum densities can be derived [39]:

np(k) =2C s=0
pp |ϕ̃s=0

pp (k)|2 + C s=0
pn |ϕ̃s=0

pn (k)|2
+ C s=1

pn |ϕ̃s=1
pn (k)|2 (3)

F pp(k) =C s=0
pp |ϕ̃s=0

pp (k)|2
F pn(k) =C s=0

pn |ϕ̃s=0
pn (k)|2 + C s=1

pn |ϕ̃s=1
pn (k)|2 (4)

and the same when replacing n with p. Here, Cα
i j are the nu-

clear contacts that determine the number of pairs in a given two-
body channel, nN (k) is the one-body momentum distribution, and 
F N N(k) is the relative two-body momentum distribution. F N N (k) =∫

dK F N N(k, K ), where F N N(k, K ) is the probability of finding a 
pair of nucleons with relative momentum k, and center-of-mass 
(c.m.) momentum K . Similarly, ρN N(r) describes the probability to 
find a pair of nucleons with relative distance r . The subscripts N, 
and NN, stand for the type of nucleon/nucleon-pairs considered. 
Clearly, np(n)(k) = 2F pp(nn)(k) + F pn(k) [39]. Equivalent two-body 
coordinate space densities for ρN N (r) are given by replacing ϕ̃(k)

with ϕ(r) in Eq. (4), while keeping the same nuclear contacts. We 
note that in deriving Eq. (3) the center-of-mass momentum of the 
pairs was assumed to be much smaller than k.

We choose to normalize ϕ̃(k) such that 
∫ ∞

kF
|ϕ̃(k)|2dk = 1. Us-

ing this normalization, and Eq. (3), the fraction of the one-body 
momentum density above kF is given by:∫ ∞

kF
n(k)dk∫ ∞

0 n(k)dk
= C s=0

nn + C s=0
pp + C s=0

pn + C s=1
pn

A/2
, (5)

where n(k) = nn(k) + np(k), A is the number of nucleons in the 
nucleus and C s

N N/(A/2) gives the fraction of the one-body mo-
mentum density above the Fermi momentum due to each type of 
SRC pair.

Ab-initio nuclear two-body densities – Recent progress in quan-
tum Monte-Carlo techniques allows performing ab-initio many-
body calculations of nuclear structure for nuclei as heavy as 12C 
[16,17]. Furthermore, cluster variational Monte-Carlo (CVMC) pro-
vides a way to obtain nuclear structure calculations for 16O and 
40Ca [21]. These calculations are done using the AV18 and UX 
potentials, and result in one- and two-body nucleon densities in 
coordinate and momentum space.

The detailed study of the relation between two-body densities 
and two-nucleon knockout measurements is only now starting [39,
49,50].

When examining the two-body densities at high relative mo-
mentum, certain care should be taken to separate SRC pairs from 
non-correlated pairs with high relative momentum. Two nucleons 
that form an SRC pair are close to each other, each have high 
momentum, their relative momentum is high, and their c.m. mo-
mentum is low. However, not all nucleon pairs with high relative 
momentum are necessarily SRC pairs. For example, a particle with 
momentum k1 ≈ 4kF , and any uncorrelated “mean-field” particle at 
rest k2 ≈ 0, will yield a pair with high relative momentum k ≈ 2kF , 
and c.m. momentum K ≈ 2kF . In such cases, the high c.m. mo-
mentum is a signature for uncorrelated pairs. As we examine pairs 
with larger and larger relative momentum, this scenario becomes 
less and less probable as the probability of finding a nucleon with 
high momentum falls fast with the momentum, i.e. its easier to 
find two nucleon with momentum ≈ 2kF then one nucleon with 
momentum ≈ 4kF .

There are two ways to access regions in the two-body momen-
tum distribution dominated by SRC pairs, with minimal mean-field 
nucleon contamination. One is to integrate over the pairs c.m. mo-
mentum but request a very large relative momentum, which en-
sures that the pair is truly an SRC pair. This explains why Ref. [39]
observed scaling between the one and two-body densities only for 
momentum much larger than kF . The alternative approach is to 
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