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We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum 
expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for 
a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this 
vacuum expectation value, generated by a gravitational wave, can be connected with particle production 
from gravitational waves and may have consequences for the early Universe where scalar fields are 
thought to play an important role.
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1. Introduction

The Brout–Englert–Higgs mechanism [1] is one of the corner-
stones of the Standard Model of particle physics. Part of the Higgs 
mechanism involves a scalar field developing a non-zero vacuum 
expectation value rather than having a vacuum expectation value 
of zero. An example of this non-zero vacuum expectation value 
comes from ��4 theory with a complex scalar field whose La-
grangian density is

L = ∂μ�∗∂μ� − 1

2
m2|�|2 − 1

4
�|�|4 . (1)

The equation of motion from (1) is

∂μ∂μ� − m2� − ��3 = 0 . (2)

If we look for solutions, �, which are space and time independent 
(i.e. ∂μ� = 0) and if m2 > 0 then the only solution is � = 0. How-
ever for a tachyonic mass term (i.e. m2 < 0) (2) has a non-zero, 

constant solution �0 = 〈0|√�∗�|0〉 =
√

−m2

�
. The vacuum solu-

tion is now given by � =
√

−m2

�
eiθ with magnitude 

√
−m2

�
and a 

phase eiθ (0 ≤ θ ≤ 2π ). Due to the phase of eiθ there are an in-
finite number of equivalent vacua labeled by θ . Usually one takes 

* Corresponding author.
E-mail addresses: preston .jones1 @erau .edu (P. Jones), 

pmcdougall @mail .fresnostate .edu (P. McDougall), raggy65 @mail .fresnostate .edu
(M. Ragsdale), dougs @csufresno .edu (D. Singleton).

the arbitrary choice of θ = 0 as the vacuum for �. This non-zero 
vacuum expectation value of the scalar field is responsible for giv-
ing masses to the W ± and Z 0 gauge bosons of the SU (2) × U (1)

Standard Model, while leaving the photon massless.
Aside from the Standard Model, the Higgs mechanism has 

found application in the theory of superconductors via the Ginz-
burg–Landau model [2]. In the Ginzburg–Landau model the source 
of the non-zero order parameter/scalar field vacuum expectation 
value is due to the interaction between the electrons and the 
phonons of the background lattice.

Another set of phenomena where a non-trivial vacuum is im-
portant are the Casimir effect [3] and dynamical Casimir effect [4]. 
In the canonical Casimir effect there are two, neutral, conducting 
plates which are placed a fixed distance apart. This restricts the 
type of quantum fluctuations that can occur between the plates as 
compared to outside the plates leading to an attractive force be-
tween the plates. In the dynamical Casimir effect the plates are 
moved with respect to one another and this results in the creation 
of photons out of the vacuum – a result which has been observed 
relatively recently [5].

Below we will show that a massless scalar field placed in a 
gravitational wave background leads to the scalar field develop-
ing a non-zero vacuum expectation value. We make a comparison 
of this gravitationally induced effect with the scalar field vacuum 
expectation value of spontaneous symmetry breaking as found in 
the Higgs mechanism and the Ginzburg–Landau model. The com-
parison to the Ginzburg–Landau model is especially relevant since 
there the symmetry breaking is driven by the interactions induced 
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by the phonons from the background lattice, whereas in the usual 
Higgs mechanism the symmetry breaking comes from the scalar 
field’s self interaction. As in the Ginzburg–Landau model, here the 
scalar field’s vacuum value is driven by interactions with the grav-
itational wave background. We also make a comparison between 
the present gravitationally induced vacuum expectation value and 
the dynamical Casimir. In the dynamical Casimir effect and the 
present case there is the possibility of producing massless parti-
cles from the vacuum. There are earlier works [6] [7] which show 
that a plane gravitational wave background will not produce par-
ticles from the vacuum. We show how this is avoided exactly for 
the case of massless (scalar) fields.

Finally, we connect the results of the present paper with other 
recent works that propose there is a shift of the pre-existing Higgs 
vacuum expectation value of the Standard Model either via station-
ary gravitational fields [8,9] or via a gravitational wave background 
[10]. There is also very recent work [11] which discusses the con-
sequences of the interaction of a gravitational wave background 
with a time-dependent vacuum expectation value from a (non-
Abelian) gauge field.

2. Scalar field in gravitational wave background

2.1. Approximate gravitational wave background

The equation for a complex scalar field, ϕ , in a general gravita-
tional background is

1√
−det

[
gμν

]
(

∂μgμν
√

−det
[

gμν

]
∂ν

)
ϕ = 0. (3)

Following [12] we take the gravitational wave to travel in the pos-
itive z direction and have the + polarization. For this situation the 
metric [13] can be written as,

ds2 = −dt2 + dz2 + f (t − z)2dx2 + g(t − z)2dy2

= dudv + f (u)2dx2 + g(u)2dy2, (4)

where in the last step we have switched to light front coordinates 
u = z − t and v = z + t with metric components guv = gvu = 1

2 and 
gxx = f (u)2 and g yy = g(u)2. The metric functions f (u) and g(u)

will be taken to be oscillatory functions of u. The determinant term 
in (3) is 

√
−det

[
gμν

] = f g
2 . Substituting the light front version of 

the metric into equation (3) gives(
4 f 2 g2∂u∂v + 2 f g∂u( f g)∂v + g2∂2

x + f 2∂2
y

)
ϕ = 0. (5)

We take the metric ansatz functions of the form f (u) = 1 + ε (u), 
and g (u) = 1 − ε (u) and substitute these into equation (5). This 
form for f (u) and g (u) describes a wave propagating in the z
direction so that x and y directions should be physically identical. 
Thus we require of the solution that 

(
∂2

y − ∂2
x

)
ϕ = 0. Using this 

equation (5) becomes,[
4
(

1 − 2ε2 + ε4
)

∂u∂v − 4
(

1 − ε2
)
ε (∂uε) ∂v

+ (1 + ε2)(∂2
x + ∂2

y)
]
ϕ = 0. (6)

Finally we consider a sinusoidal, plane gravitational wave by tak-
ing ε (u) = h+eiK u , where h+ is a dimensionless amplitude and 
K is a wave number. The metric must be real so it is under-
stood that the metric components are obtained by taking the real 
part of the ansatz functions so that f (u), g(u) = 1 ± h+eiK u →
1 ± h+ cos(K u). This real form still satisfies the linearized general 

relativistic field equations to which f (u), g(u) are solutions. Sub-
stituting this choice of ε(u) into equation (6) gives(

4F (u)∂u∂v − 4iK G(u) ∂v + H(u)(∂2
x + ∂2

y)
)
ϕ = 0, (7)

where F (u) ≡ (
1 − 2h2+e2iK u + h4+e4iK u

)
, G (u) ≡ (

h2+e2iK u −
h4+e4iK u

)
, and H(u) = (

1 + h2+e2iK u
)
. We separate equation (7)

using ϕ = X (x) Y (y) U (u) V (v). The eigenvalue equations and as-
sociated solutions for X(x) and Y (y) are

∂2
x X = −p2 X → X(x) = eipx , ∂2

y Y = −p2Y → Y (y) = eipy .

(8)

The function X(x) and Y (y) are simply free waves as is to be 
expected since the gravitational wave is traveling in the u = z − t
direction, and p is the common momentum in the x, y directions. 
The common momentum in the x and y directions comes from 
the assumed symmetry in these transverse directions, and it also 
realizes the condition 

(
∂2

y − ∂2
x

)
ϕ = 0 which we took above. Using 

(8) we find that (7) becomes

F (u)
∂u U

U

∂v V

V
− iK G(u)

∂v V

V
− H(u)

p2

2
= 0. (9)

Since the light front coordinate v is orthogonal to u and since the 
gravitational wave only depends on u one expects that the eigen-
function V (v) also is solved by a free, plane wave, as was the case 
for X(x) and Y (y). This is the case and we find

−i∂v V = pv V → V (v) = eipv v . (10)

Substituting equation (10) into equation (9) and defining λ ≡ p2

2pv
yields

i
∂u U (u)

U (u)
= λ

H(u)

F (u)
− K

G(u)

F (u)
. (11)

The term i ∂u U (u)
U (u)

in (11) represents the kinetic energy of the scalar 
field; the term λ H(u)

F (u)
represents the interaction of the scalar field, 

via λ, with the gravitational background, via H(u)
F (u)

; the term K G(u)
F (u)

represents a pure gravitational potential term. Equation (11) can 
be integrated to give,

U (u) = Ae
λ
K e

−λ

K
(

1−h2+e2iK u
) (

1 − h2+e2iK u
) 1

2

(
λ
K −1

)
e−iλu , (12)

where Ae
λ
K is constant. The factor e

λ
K was chosen to ensure that 

the eigenfunction for the u direction becomes a free plane wave, 
e−iλu , as h+ → 0 (i.e. as the gravitational wave is turned off). Col-
lecting together all the solutions in x, y, v and u directions gives 
the solution of the scalar field in the gravitational background,

ϕ = Ae
λ
K e

− λ

K
(

1−h2+e2iK u
) (

1 − h2+e2iK u
) 1

2

(
λ
K −1

)

× e−iλueipv v eipxeipy + B. (13)

A is a normalization constant and we have added a constant B
which is allowed by the shift symmetry of solutions to (5). Be-
low we choose B = −A. This choice of B ensures that if one turns 
off the gravitational background (h+ → 0) and also takes the field 
momenta to zero (λ, pv , p → 0) then ϕ → 0. This solution for the 
scalar field given in (13) is very similar to the form of the solution 
found in [14] for the static electric field evaluated in light front co-
ordinates. Here we have a massless scalar field in a gravitational 
wave background.
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