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We propose a correspondence between an Anyon Van der Waals fluid and a (2 +1) dimensional AdS black 
hole. Anyons are particles with intermediate statistics that interpolates between a Fermi–Dirac statistics 
and a Bose–Einstein one. A parameter α (0 < α < 1) characterizes this intermediate statistics of Anyons. 
The equation of state for the Anyon Van der Waals fluid shows that it has a quasi Fermi–Dirac statistics 
for α > αc , but a quasi Bose–Einstein statistics for α < αc . By defining a general form of the metric for 
the (2 + 1) dimensional AdS black hole and considering the temperature of the black hole to be equal 
with that of the Anyon Van der Waals fluid, we construct the exact form of the metric for a (2 + 1)

dimensional AdS black hole. The thermodynamic properties of this black hole is consistent with those 
of the Anyon Van der Waals fluid. For α < αc , the solution exhibits a quasi Bose–Einstein statistics. For 
α > αc and a range of values of the cosmological constant, there is, however, no event horizon so there 
is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals 
black holes have only quasi Bose–Einstein statistics.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The physics of the black holes has always been one of the most 
interesting research areas since its appearance as a research field 
[1–7]. It is known that there is an analogy between an AdS black 
hole and the Van der Waals fluid [8]. The correspondence between 
the two is important because the thermodynamic behavior of black 
holes can be explained by that of the fluid; the conventional ther-
modynamic phase space (including temperature, entropy, and vol-
ume) can also be defined for an AdS black hole. This analogy will 
be more complete in an extended phase space. The past few years 
has witnessed an interest in the study of the cosmological constant 
(�) as a thermodynamic parameter in the first law of thermo-
dynamics [9,8,10–13]. Although this assumption seems awkward, 
there are good reasons why � should be considered in the first 
law of thermodynamics. First, including the cosmological constant 
� in the first law of thermodynamics will make it consistent with 
Smarr relation [10] and the variation of � will satisfy the Smarr 
relation. Second, there exist theories that show physical constants 
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such as c, G , h and � are not really constant and have variation 
with respect to the energy scale of the universe.

Once we introduce the cosmological constant as a thermo-
dynamic parameter, we can define its conjugate variable. Since 
� is proportional to the thermodynamic pressure (for d dimen-

sional space–time P = − �

8π
= (d − 1)(d − 2)

16π l2
using geometric 

units G N = � = c = kB = 1), its conjugate must have volume di-
mension. This definition will give rise to an additional term, PδV , 
in the first law of thermodynamics and the mass of the black hole 
will be defined in terms of its enthalpy. In this extended phase 
space, one can write the equation of state for the AdS black hole 
and compare it with the equation of state for the Van der Waals 
fluid that reads as follows:

T = (P + a

v2
)(v − b), (1)

where, P is the thermodynamic pressure, v is the specific volume 

of the fluid v = V

N
, and N is the degree of freedom (V is the con-

jugate volume for P ). In Ref. [14], the authors derived an exact 
form for the metric of an AdS black hole which has the same ther-
modynamics as the Van der Waals fluid. In this work, we construct 
an Anyon Van der Waals fluid whose thermodynamics is exactly 
consistent with that of an AdS Anyon Van der Waals black hole. 
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What they have in common is that the particles are considered to 
be either fermions or bosons which obey the Fermi–Dirac or the 
Bose–Einstein statistics, respectively. For a fluid of the latter type, 
there can be a Bose–Einstein condensation (For fermions there 
is no condensation because of Pauli’s exclusion principle). But in 
the (2 + 1) dimensional space time, we may have an interme-
diate statistics [15–19]. The particles that have this intermediate 
statistics are called Anyons. It is notable that fermions and bosons 
are the two limits of the Anyons. Thus, we can use a real num-
ber α (0 < α < 1) to parameterize the intermediate statistics of 
the Anyons with α = 0 corresponding to bosons (the particles that 
can have the Bose–Einstein condensation), α = 1 corresponding to 
fermions (the particles which obey the Pauli exclusion principle), 
and 0 < α < 1 parameterizing the intermediate statistics of the 
Anyons. Here, we are going to construct a metric for a (2 + 1)

dimensional black hole with statistics consistent with the inter-
mediate statistics of the Anyon fluid. The results show that the 
Anyon Van der Waals fluid has a quasi Fermi–Dirac statistics for 
αc < α < 1 and that the AdS Anyon Van der Waals fluid has a quasi 
Bose–Einstein statistics for 0 < α < αc . In the former case, how-
ever, there will be no black hole solution. Thus, for αc < α < 1, it 
is not possible to describe an AdS Anyon Van der Waals black hole 
by means of an Anyon Van der Waals fluid. The interesting conse-
quence of our work is that AdS Anyon Van der Waals black holes 
can be expressed only for 0 < α < αc and that they have a quasi 
Bose–Einstein statistics.

The paper is organized as follows:
In Sec. 2, we present a review of the AdS Van der Waals black 

hole and the equations for both its energy density and pressure. 
In Sec. 3, the equation of state for the Anyons is introduced. In 
Sec. 4, the exact form of the metric that is consistent with the AdS 
Anyon Van der Waals fluid is obtained, the equations of the energy 
density and the pressure of the black hole are derived, and the 
behavior of the energy density and the pressure are analyzed. It is 
interesting that there are black hole solutions that only correspond 
to the semi Bose Einstein statistics. We present the results and 
conclusions in Sec. 5.

2. Van der Waals black hole

In [14], the authors constructed a metric for a 3 + 1 dimen-
sional AdS black hole that has a similar thermodynamic behavior 
to that of the Van der Waals fluid and checked the validity of 
energy conditions for this black hole. This metric construction is 
based on the AdS Black hole similarity to Van der Waals fluid to-
gether with the assumption that the cosmological constant is a 
thermodynamic variable. In this extended phase space, the rela-

tion P = − �

8π
= 3

8π l2
hold between the thermodynamic pressure 

and the cosmological constant �. By assuming this equation to be 
true, we should identify the conjugate variable for the pressure 
proportional to �; obviously, the natural choice is volume. So, the 
equation for the mass of the black hole should be modified from 
δM = T δS to:

δM = T δS + V δP + .... (2)

This is why, in an extended phase space for the AdS black hole, the 
mass of the black hole is related to its enthalpy [20]. Using Eq. (2), 
one can see that the thermodynamic volume V can be obtained 
from:

V =
(

∂M

∂ P

)
s,...

. (3)

Now if we have the metric of the black hole, we can write the 
equation of state for the black hole as P = P (V , T ) and compare it 
with that for the fluid. For simplicity, one can assume the metric 
to be:

ds2 = − f dt2 + dr2

f
+ r2d�2 (4)

f = r2

l2
− 2M

r
− h(r, P ), (5)

M = 4

3
πr3+ P − r+

2
h(r+, P ) (6)

where, M is the mass of the black hole and h(r, P ) should be 
determined accordingly. We assume this metric to be a solution 
for the Einstein field equation Gμν + �gμν = 8π Tμν . The en-
ergy momentum tensor is defined in an orthonormal basis by 
T μν = ρeμ

0 eν
0 + ∑

i pie
μ
i eμ

i , where ρ is the black hole energy den-
sity and p is its pressure. So, the pressure and the energy density 
of the black hole can be calculated by using the metric in Eq. (4):

ρ = −p1 = 1 − f − r f ′

8πr2
+ P (7)

p2 = p3 = r f ′′ + 2 f ′

16πr
− P , (8)

with the prime denoting the derivative with respect to r.
One should define the function f such that the equation of 

state for the black hole is consistent with that of the Van der Waals 
fluid. The specific volume and temperature of the black hole are 
defined as functions of the black hole horizon and the thermody-
namic pressure,

v = k

4πr2+
[4

3
πr3+ − r+

2

∂h(r+, P )

∂ P
] (9)

T = f ′

4π
= 2r+ P − h(r+, P )

4π
− 1

4π

∂h(r+, P )

∂r+
, (10)

where, for a d space time dimension, k = 4(d−1)
d−2 , v = k V

N and N is 
proportional to the horizon area as N = A

L2
pl

with A = 4πr2. Since 

we expect the equation of state for the AdS black hole to be con-
sistent with that of the Van der Waals fluid, we should compare 
the equation of state obtained from Eqs. (9) and (10) with that of 
the Van der Waals fluid. The direct relation between the specific 
volume and pressure of Van der Waals fluid and the temperature 
of the black hole will be obtained by combining Eqs. (9), (10), 
and (1):

2r+ P − h

4r+π
− h′

4π
=

(
P + a

v2

)
(v − b) . (11)

Where prime denotes the derivative with respect to r+ . By set-
ting h(r, P ) = A(r) − P B(r), one can find an solution for Eq. (11). 
This leads to an equation in the form of F1(r)P + F2(r) = 0 in 
which F1 and F2 are the functions of A and B and their deriva-
tives. By setting F1(r) = 0 and F2(r) = 0 separately, one can derive 
the solution for h(r, P ); hence, we will have the solutions for the 
energy density and pressure of the black hole.

In this work, we are going to construct new types of black 
holes whose statistics completely matches that of the Anyon Van 
der Waals fluid. Anyons are (2 + 1) dimensional particles with a 
statistics that interpolates between Bose–Einstein and Fermi–Dirac 
statistics. As mentioned, the parameter α is used to identify these 
particles so that we expect the Anyons to obey the Pauli exclusion 
principle for αc < α < 1 and to have a Bose–Einstein condensation 
for 0 < α < αc .
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