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We propose a novel method to compute multi-loop master integrals by constructing and numerically 
solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can 
be systematically applied to problems with arbitrary kinematic configurations. Numerical tests show that 
our method can not only achieve results with high precision, but also be much faster than the only 
existing systematic method sector decomposition. As a by product, we find a new strategy to compute 
scalar one-loop integrals without reducing them to master integrals.
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1. Introduction

With the continuous improvement of statistics and experimen-
tal systematics at the Large Hadron Collider, the aim of testing 
the particle physics Standard Model and discovering new physics 
strongly demands theoretical predictions to also improve uncer-
tainty to the same level. For many important processes, high order 
perturbative calculations are needed to this end. At the one-loop 
order, thanks to the improvement of traditional tensor reduction 
[1] and the development of unitarity-based reduction [2–4], one 
can efficiently express scattering amplitudes in terms of linear 
combinations of master integrals (MIs). As the computation of one-
loop MIs is a solved problem [5–7], one-loop calculations can now 
be done automatically. Expressing multi-loop scattering amplitudes 
in terms of MIs is also possible using such as the integration-
by-parts (IBP) reduction [8–13] or the unitarity-based multi-loop 
reduction [14–26]. Then, one of the main obstacles for multi-loop 
calculation is the computation of multi-loop MIs.

We take two recent studies in literature as examples to demon-
strate how hard the multi-loop MIs computation is. One example is 
a two-loop calculation of pseudoscalar quarkonium inclusive decay 
[27], where the computational expense of MIs is about O(105) CPU 
core-hour. Another example is a calculation of four-loop nonplanar 
cusp anomalous dimension [28]. The reduction of amplitudes to 
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MIs in this problem has been done much earlier in Ref. [29], yet 
the computation of these MIs is very challenging. The final numer-
ical result obtained in Ref. [28] has uncertainty as large as 10%, 
which we believe is already the best precision that one can get 
with a tolerable computational expense.

Currently, the only method that can systematically compute any 
MI is the sector decomposition [30]. Unfortunately, this method 
is extremely time-consuming, besides that it is hard to achieve 
high precision. Mellin–Barnes representation [31] is another widely 
used method, yet it has difficulty to deal with non-planar dia-
grams, at least not in a systematic way (see Ref. [32] and refer-
ences therein for recent progress). The differential equation (DE) 
method [33–36] is a powerful tool to compute multi-loop MIs, 
which bases on the fact that derivation of a MI with respect to its 
kinematic variables (including Mandelstam variables and internal 
masses) can be re-expressed as a linear combination of MIs using 
aforementioned reductions. For simple problems, DE method can 
give analytical results thanks to the introduction of canonical form 
[37–39]; while for complicated problems, one can solve DEs nu-
merically to achieve results with high precision (see [40–43] and 
references therein). However, it needs input of boundary condi-
tions (BCs) of MIs evaluated at another set of kinematic config-
urations. As there is no general rule to obtain BCs for arbitrary 
problems at present, one needs to find good BCs case by case, 
which makes it hard for DE method to be systematical. In prac-
tice, sector decomposition method is employed in Ref. [27], and 
both sector decomposition method and Mellin–Barnes representa-
tion method are employed in Ref. [28].
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In this Letter, we develop a novel method to compute multi-
loop MIs by constructing and solving a system of ordinary differ-
ential equations (ODEs). Advantages of our method are as follows: 
1) Our BCs are fully massive vacuum integrals with a single mass 
scale, which are much simpler to compute and have been well 
studied in literature [44]. As a result, our method can be system-
atically applied to any complicated problem; 2) ODEs can be nu-
merically solved efficiently to high precision, no matter how many 
mass scales are involved in the problem; 3) Computing MIs with 
complex kinematic variables is very easy in our method, while it 
could be hard for other methods (note that introducing imaginary 
part to kinematic variables is needed for many purposes, e.g., to 
describe particle decay or to study the S-matrix theory). Numeri-
cal tests show that our method can be much faster than the only 
existing systematic method sector decomposition. As a by product, 
we find a new strategy to compute scalar one-loop integrals in ar-
bitrary spacetime dimensions without reducing them to MIs.

2. The method

Let us introduce a dimensionally regularized L-loop MI,

I(D; {να};η) ≡
∫ L∏

i=1

dD�i

iπ D/2

N∏
α=1

1

(Dα + iη)να
, (1)

where D is the spacetime dimension, Dα ≡ q2
α − m2

α are usual 
Feynman propagators, and qα are linear combinations of loop mo-
menta �i and external momenta pi . The actual integral that we 
want to get is

I(D; {να};0) ≡ lim
η→0+ I(D; {να};η), (2)

with 0+ defining the causality of Feynman amplitudes. In the fol-
lowing, we will suppress the dependence on D and {να} whenever 
it does not introduce any confusion.

We set up ODEs by differentiating MIs with respect to η and 
then re-expressing them in terms of MIs, which results in

∂

∂η
�I(η) = A(η)�I(η) , (3)

where �I(η) is the vector of a complete set of m MIs and A(η) is 
the m × m coefficient matrix. To obtain MIs at η = 0+ , we solve 
the ODEs with BCs chosen at η = ∞. As we will show, BCs are 
simply vacuum integrals with equal masses, which can be com-
puted rather easily. Considering also that numerically solving these 
ODEs is well-studied mathematical problem, our method provide a 
systematic and efficient way to compute multi-loop MIs to high 
precision.

3. Boundary conditions

Before studying BCs rigorously, let us explain the idea of choos-
ing BCs at η = ∞. With a sufficiently large imaginary part in all 
denominators, we expect all kinematic variables to be negligible 
because they are finite. Thus we should be able to set both inter-
nal masses mα and external momenta pi to zero at the boundary, 
which results in simple vacuum integrals with equal masses. The 
only loophole in this argument is that, as loop momenta �i can be 
arbitrarily large, it is not obvious that �i · p j are negligible compar-
ing with η even if η → ∞. The loophole can be fixed by studying 
its Feynman parametric representation, and then our naïve expec-
tation holds in general.

We assume να > 0 for all α in Eq. (1) to simplify our discus-
sion, although our final conclusion is unchanged even without this 

Fig. 1. Diagrams of nonfactorizable vacuum master integrals up to 3 loops.

condition. Then the Feynman parametric representation of Eq. (1)
is given by

I(η) = (−1)ν
� (ν − LD/2)∏

i �(νi)

∫ ∏
α

(xνα−1
α dxα)

× δ

(
1 −

∑
j

x j

)
U−D/2

(F/U − iη)ν−LD/2
, (4)

where U and F are so-called graph polynomials that can be re-
lated to the spanning 1-tree and 2-tree of the original Feynman 
diagram, respectively (see e.g. Ref. [45]), and ν is short for 

∑
α να . 

All kinematic variables are incorporated in F , leaving U depending 
only on Feynman parameters.

An important observation is that |F/U | is bounded in the open 
interval of Feynman parameter space. To show this, we express 
F = ∑

i Fi and U = ∑
i Ui , where Fi and Ui are monomials in 

Feynman parameters. By definition, a 2-tree can be generated by a 
1-tree, i.e. there exists a pair of indexes j and k so that Fi = tiU j xk , 
where ti is the kinematic part of Fi . We then have |Fi| < |ti ||Ui | <
|ti ||U | and |F | < ∑

i |ti ||U |, where we have used the fact that Ui
are positive definite in the open interval. As 

∑
i |ti | is finite, we 

conclude that |F/U | is bounded.
Because |F/U | is bounded, F/U in the denominator of Eq. (4)

can be neglected as η → ∞. This effectively sets all kinematic 
variables to zero in the original integral, because F includes all 
kinematic variables. The result is a fully massive vacuum integral 
Ibub(η) which shares the same internal topology as the original in-
tegral. Because this is a single scale integral, the η dependence can 
be factorized out, which results in a relation

I(η) = ηLD/2−ν
[

Ibub(1) +O(η−1)
]
, (5)

where Ibub(1) can be interpreted as a vacuum integral with equal 
internal squared masses m2 = −i. It is worth mentioning that the 
object J (η) ≡ ην−LD/2 I(η) is analytic near η = ∞ based on the 
above discussion.

To compute Ibub(1), we again reduce it to linear combination of 
corresponding vacuum MIs, diagrams of which up to 3 loops are 
shown in Fig. 1. Computation of these vacuum MIs is well studied, 
with analytical results available up to 3 loops [46–48] (see [49]
and references therein for some pioneering works) and numerical 
results available up to 5 loops [44,50,51]. We therefore conclude 
that the computation of BCs in our method is a solved problem.

4. Solving ODEs numerically

Knowing BCs, solving the ODEs numerically to obtain MIs at 
η = 0+ is a well-studied mathematical problem. The solution can 
be obtained efficiently to high precision.
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