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By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of 
moments of the distribution function, we establish a set of equations which, on the one hand, capture 
exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of 
equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence 
sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in 
regimes that are far from local equilibrium.
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1. Introduction

The observation that the evolution of the quark–gluon plasma 
produced in ultra-relativistic heavy ion collisions is well described 
by viscous hydrodynamic equations raises a number of interest-
ing questions that are very much debated presently [1]. Traditional 
understanding of hydrodynamics would imply that the system has 
reached local equilibrium, and the small viscosity extracted from 
the analysis of the data is suggestive of short mean free paths. 
However, works on strongly coupled plasmas, using in particular 
holography techniques, indicate that viscous hydrodynamics works 
even when large anisotropies, that signal departure from local 
equilibrium, are still present [2]. At the same time, there is evi-
dence that hydrodynamics is capable of describing small colliding 
systems, for which no clear separation a priori exists between mi-
croscopic and macroscopic scales (see e.g. the recent discussion in 
[1,3] and references therein).

Recently, it has been argued that part of the success of hydro-
dynamics could be due to the existence of a stable attractor, to 
which the solution of the dynamical equations quickly converge 
before eventually reaching the viscous hydrodynamic regime [4]. 
This suggestion has triggered many studies, some of which involve 
sophisticated mathematical developments [5–9]. In this paper, we 
would like to offer an alternative perspective on the issue, based 
on the simple, and physically motivated observation, that the main 
features of the dynamics of expanding plasmas are determined by 
the competition between the expansion itself, which is dictated by 
the external conditions of the collisions, and the collisions among 
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the plasma constituents which generically tend to isotropize the 
particle momentum distribution functions. These two competing 
effects give rise to two independent fixed points of a suitably 
defined dynamical quantity. Many recent results find a natural in-
terpretation in the interplay between these two fixed points.

As in many works on this issue, we focus on the paradigmatic 
example of the Bjorken flow [10], and consider an expanding sys-
tem of massless particles characterized by a distribution function 
f whose time evolution is given by a kinetic equation. Symmetry 
allows us to reconstruct the full space–time history of the system 
from the knowledge of what happens in a slice centered around 
the plane z = 0 where the collision takes place. The distribution 
function in that slice depends solely on the momentum of the par-
ticle and the (proper) time τ , i.e., f = f (p, τ ). Using a relaxation 
time approximation for the collision kernel, we can then write the 
following simple kinetic equation [11][
∂τ − pz

τ
∂pz

]
f (p, τ ) = − f (p, τ ) − feq(p/T )

τR
. (1)

Here feq(p/T ) is a function that depends only on p = |p| and an 
effective temperature T (τ ) which is determined by requiring that 
the energy density calculated with feq(p/T ) and f (p, τ ) takes the 
same value, ε ∝ T 4, at all times. The kinetic equation (1) makes 
transparent the competition alluded to above, between the expan-
sion and the collisions. In the absence of the collision term, the 
expansion, controlled by the term −pz/τ in the left hand side, 
leads to a flattened distribution, f (p, τ ) → f0(pzτ , p⊥), where f0
is the initial distribution and p⊥ is the component of the momen-
tum orthogonal to the z-axis. On the other hand, the collision term 
in the right hand side drives the distribution towards isotropy, at a 
rate controlled by the relaxation time τR .
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2. Kinetics in terms of L-moments

Although Eq. (1) can be easily solved numerically, more insight 
can be gained by using an alternative, albeit approximate, approach 
that eliminates from the description as much of irrelevant informa-
tion as possible. Thus, in this paper, instead of considering the full 
distribution f (p, τ ), we focus on some of its moments, introduced 
in Ref. [12]:

Ln =
∫

d3p

(2π)3 p0
|p|2 P2n(pz/|p|) f (p, τ ), (2)

where P2n is a Legendre polynomial of order 2n. The moments Ln

with n ≥ 1 describe the momentum anisotropy of the system. In 
particular L1 =PL −PT reflects the asymmetry between longitudi-
nal (P L ) and transverse (P T ) pressures. The moment L0 coincides 
with the energy density, L0 = ε = P L + 2P T . Observe that the mo-
mentum weight of the integration in Eq. (2) is always |p|2, instead 
of being an increasing power of |p| as is the case in more standard 
approaches (see e.g. [13]). Thus, the Ln ’s contain little information 
on the radial shape of the momentum distribution, preventing us 
for instance to reconstruct from them the full distribution. How-
ever, this radial shape plays a marginal role in the isotropization 
of the momentum distribution, which is our main concern here. 
Note that all the Ln have the same dimension.

By using the recursion relations among the Legendre polynomi-
als, we can recast Eq. (1) into the following (infinite) set of coupled 
equations

∂Ln

∂τ
= − 1

τ
[anLn + bnLn−1 + cnLn+1] − Ln

τR
(n ≥ 1)

∂L0

∂τ
= − 1

τ
[a0L0 + c0L1] , (3)

where the coefficients an, bn, cn are pure numbers

an =2(14n2 + 7n − 2)

(4n − 1)(4n + 3)
, bn = (2n − 1)2n(2n + 2)

(4n − 1)(4n + 1)
,

cn = (1 − 2n)(2n + 1)(2n + 2)

(4n + 1)(4n + 3)
, (4)

entirely determined by the free streaming part of the kinetic equa-
tion. Note that the collision term does not affect directly the en-
ergy density, but only the moments with n ≥ 1. In fact, if one ig-
nores the expansion, i.e., set an = bn = cn = 0, the moments evolve 
according to

L0(τ ) = L0(0), Ln(τ ) = Ln(0)e−τ/τR . (5)

This solution illustrates the role of the collisions in erasing the 
anisotropy of the momentum distribution as the system ap-
proaches equilibrium. Of course, the expansion prevents the sys-
tem to ever reach this trivial equilibrium fixed point: instead, the 
system goes into an hydrodynamical regime, as we shall discuss 
later.

The system of Eqs. (3) lends itself to simple truncations. Thus 
by ignoring all moments of order higher than n, one obtains a fi-
nite set of n + 1 equations that can be easily solved. The accuracy 
of such a procedure can be judged from Fig. 1, where the moments 
obtained from various truncations are compared with those of 
the numerical solution of Eq. (1) for an initial distribution typical 

of a heavy ion collision: f (τ0, pT , pz) = f0� 
(

Q s −
√

ξ2 p2
z + p2

T

)
with f0 = 0.1, ξ = 1.5, corresponding to an initial momentum 
anisotropy PL/PT ≈ 0.5, and τ0 = Q −1

s [12]. Already the lowest 
order truncation at n = 1 captures the qualitative behavior of the 

Fig. 1. (Color online) Comparison of the L-moment equations obtained from various 
truncation of Eqs. (3) (lines), with those of the numerical solution of the kinetic 
equation (1) (symbols).

full solution. Note that the approach to the exact solution is alter-
nating, which offers an estimate of the truncation error. The energy 
density approaches smoothly the hydrodynamic regime as τ � τR , 
while the non monotonous behavior of the ratio L1/L0 reflects the 
competition between expansion and collisional effects that we now 
analyze in more detail, starting with the free streaming regime.

3. The free streaming fixed point

The free streaming regime is described by Eq. (3) where one 
ignores the collision term. It is not hard to see that the result-
ing equation possesses a stable solution at large time, in which 
all moments decay as 1/τ and are proportional to each other: 
Ln(τ ) = AnL0(τ ), where the dimensionless constants An charac-
terize the moments of a distribution that is flat in the pz direction 
[12]

An = P2n(0) = (−1)n (2n − 1)!!
(2n)!! . (6)

Note that A1 = −1/2, corresponding to a vanishing longitudinal 
pressure. As for the factor 1/τ , it reflects the conservation of the 
energy in the increasing comoving volume. Defining

gn(τ ) = τ∂τ lnLn, (7)

we get from Eq. (3)

gn(τ ) = −an − bn
Ln−1

Ln
− cn

Ln+1

Ln
− (1 − δn0)

τ

τR
. (8)

The solution above corresponds to a fixed point for the gn ’s. Drop-
ping the last term, and using the expression (6) for the ratio of 
moments, one indeed verifies easily that for all n, gn(τ ) = −1. If 
the initial ratios of moments are chosen according to Eq. (6), the 
gn ’s remain constant in time (all equal to −1), whereas for arbi-
trary initial conditions, they will reach the fixed point at late time. 
Note that the fixed point obtained from a truncation at a finite 
order differs slightly from −1: for instance, in the simplest trun-
cation at n < 2, g0 = g1 = −0.92937 instead of −1, and A1 ≈ −0.6
instead of −0.5.
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