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The superspinar proposed by Gimon and Hořava is a rapidly rotating compact entity whose exterior is 
described by the over-spinning Kerr geometry. The compact entity itself is expected to be governed by 
superstringy effects, and in astrophysical scenarios it can give rise to interesting observable phenomena. 
Earlier it was suggested that the superspinar may not be stable but we point out here that this does 
not necessarily follow from earlier studies. We show, by analytically treating the Teukolsky equations by 
Detwiler’s method, that in fact there are infinitely many boundary conditions that make the superspinar 
stable at least against the linear perturbations of m = l modes, and that the modes will decay in time. 
Further consideration leads us to the conclusion that it is possible to set the inverse problem to the 
linear stability issue: since the radial Teukolsky equation for the superspinar has no singular point on the 
real axis, we obtain regular solutions to the Teukolsky equation for arbitrary discrete frequency spectrum 
of the quasi-normal modes (no incoming waves) and the boundary conditions at the “surface” of the 
superspinar are found from obtained solutions. It follows that we need to know more on the physical 
nature of the superspinar in order to decide on its stability in physical reality.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Kerr spacetime is an exact stationary solution of the vac-
uum Einstein equations and is characterized by two parameters, 
namely the gravitational mass M and the so-called Kerr parame-
ter a which is the angular momentum divided by M . The solution 
describes a rotating black hole if a2 ≤ M2, whereas it describes a 
naked singular spacetime if a2 > M2, using the geometrized units 
(G = c = 1). The Kerr black hole has been extensively studied in 
many scenarios which would be stable against linear perturbations. 
This may suggest the reliability of the weak version of the cosmic 
censorship hypothesis whose statement is, roughly speaking, the 
spacetime singularities formed from generic initial conditions are 
enclosed by event horizons. Also, many black-hole candidates, i.e. 
objects described by the Kerr solution of a2 < M2 have been found 
in our universe.
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Gimon and Hořava pointed out an interesting fact that the su-
persymmetry does not imply the Kerr bound a2cleqM2, and hence 
if a very compact object of a2 > M2 is found, it may be a signal of 
superstring theory [1]. They named it the superspinar. The naked 
singularity will be made harmless by stringy effect. However, be-
fore the indication of Gimon and Hořava, a study suggested the in-
stability of the over-spinning Kerr spacetime a2 > M2 [2]. After the 
superspinar possibility, few more studies were done on the stabil-
ity of the over-spinning Kerr geometry by other researchers [3–5], 
to suggest that the superspinar is unstable under various bound-
ary conditions. The variety of the boundary conditions is maximal 
in the study by Pani et al., which includes all the previous stud-
ies, and they concluded that the over-spinning Kerr geometry and 
thus the superspinar is unstable. However, it should be noted that 
in order to conclude so, we must show that the over-spinning Kerr 
geometry is unstable under all possible boundary conditions, since 
at present nobody knows the physical nature of the superspinar. 
From this standpoint, the numerical results obtained by Pani et al.
may not necessarily imply the instability of the superspinar.
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In this paper, in order to illustrate the stability problem of the 
superspinar, we analytically treat the linear perturbations in the 
near-extremal over-spinning Kerr spacetime by the manner devised 
by Detweiler [6–8]. It turns out that under a variety of boundary 
conditions the modes decay in time and the superspinar is stable.

This result may have intriguing implications on the existence 
and physics of very rapidly rotating compact objects in the Uni-
verse. It therefore follows from our results here that, at the very 
least, we need a detailed study of physically allowed boundary 
conditions in order to decide on the stability of superspinar or sim-
ilar objects.

2. Teukolsky equations

The perturbations in the Kerr spacetime are governed by the 
Teukolsky equation [9]; Writing the master variable ψ in the form 
ψ = e−iωt+imϕ Slm(θ)Rlm(r), the radial and angular Teukolsky equa-
tions are given by
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for the scalar (|s| = 0), the electromagnetic (|s| = 1) and gravi-
tational (|s| = 2) perturbations, where F = s F l

m,ω with the inte-
ger l larger than or equal to max(|m|, |s|) is the separation con-
stant equivalent to the eigenvalue of Eq. (2) with the boundary 
conditions of regularity at θ = 0 and π , K := (r2 + a2)ω − am, 
λ := F + a2ω2 − 2amω, and � := r2 − 2Mr + a2. In the case of 
a2 < M2, r = r± := M ± √

M2 − a2 are real roots of � = 0; r = r+
corresponds to the event horizon and r = r− is the location of the 
Cauchy horizon. In the extremal case, a2 = M2, r+ and r− agree 
with each other, and there is only one degenerate event horizon. 
In the case of a2 > M2, i.e., the superspinar, there is no real root 
of � = 0, and correspondingly no event horizon exists.

In order to see whether the superspinar is stable, we investigate 
the angular frequencies of the quasi-normal modes, which are lin-
ear perturbations around the Kerr metric without incoming waves 
at infinity. Hence we focus on the component of the Weyl tensor 
denoted by ψ4, which corresponds to outgoing gravitational waves 
and relates to the master variable through ψ4 = (r − ia cos θ)−4 ψ

with s = −2.
Hereafter, we follow Ref. [8] so that it is easy to compare the 

superspinar case with the black-hole case. Instead of Rlm , the fol-
lowing variable is introduced;

Rlm = �−s R̃lm exp

(
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)
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Then, Eq. (1) becomes
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where, using F = E − s(s + 1), we have introduced s̃ := −s and 
λ̃ := λ + 2s = E + a2ω2 − 2amω − s̃(s̃ + 1).

3. Quasi-normal modes of near-extremal Kerr spacetime

We consider a near-extremal Kerr spacetime and hence we 
write the Kerr parameter in the form

a = M(1 − ε),

assuming 0 < |ε| � 1. The spacetime contains a superspinar in the 
case of ε < 0, whereas there is a black hole in the case of ε > 0.

In the case of black hole, it is known that the quasi-normal 
mode (QNM) frequency ω approaches m/2M for m = l in the limit 
of ε → 0+ [6]. The numerical study in Ref. [5] has revealed that 
even in the superspinar case, the QNM frequency ω approaches 
m/2M for m = l modes in the limit ε → 0− . Hence, hereafter we 
focus on the modes of m = l and assume

Mω − m

2
= O

(|ε|p)
, (5)

where p is a positive constant.
We rewrite Eq. (4) in terms of the dimensionless variables y :=

(r − M)/M and ω̃ := Mω as,
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Before proceeding to our task, we briefly mention our strategy 
to obtain the QNM frequency for the black hole case. First, we ob-
tain the approximate solutions of Eq. (6) in the far zone defined 
as y � max

[√|ε|, |ε|p
]

and the near zone defined as y � 1, sep-
arately. Then, we choose appropriate integration constants so that 
these solutions agree with each other in the overlapping region, 
max

[√|ε|, |ε|p
] � y � 1. Finally, we impose the no-incoming 

wave condition on the far-zone solution at infinity and the reg-
ularity condition on the near-zone solution at the event horizon, 
for black holes. A similar procedure is followed for the superspinar 
in order to clarify the difference from the black hole case.

In the far zone, the following equation approximates to Eq. (6);
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The solution of the above equation is written in terms of confluent 
hypergeometric functions 1 F1(α; γ ; z);
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where A and B are integration constants, and

δ2 := 4ω̃2 − 1

4
− λ̃ − s̃(s̃ + 1) � 1

4
(7m2 − 1) − E.

This definition of δ2 is different from Eq. (9) in Ref. [8] due to 
a typo. For the near-zone analysis, we keep terms only of leading 
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