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We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in 
a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total 
angular momentum, and in any number of spatial dimensions. The only assumptions are that the interac-
tions have finite range. The finite-volume correction is a sum of contributions from all possible breakup 
channels. In the case where the separation is into two bound clusters, our result gives the leading vol-
ume dependence up to exponentially small corrections. If the separation is into three or more clusters, 
there is a power-law factor that is beyond the scope of this work, however our result again determines 
the leading exponential dependence. We also present two independent methods that use finite-volume 
data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-
energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques 
introduced here, one can even extract the infinite-volume energy limit using data from a single-volume 
calculation. The derived relations are tested using several exactly solvable systems and numerical exam-
ples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic 
systems.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a number of highly influential papers [1–3], Lüscher derived 
the volume dependence of two-particle bound states and scat-
tering states in cubic periodic volumes. The bound-state relation 
connects the finite-volume correction to the asymptotic properties 
of the two-particle wave function, whereas the elastic scattering 
result relates the volume dependence of discrete energy levels to 
physical scattering parameters. This work has since been extended 
in several directions, including non-zero angular momenta [4–6], 
moving frames [7–11], generalized boundary conditions [12–16], 
particles with intrinsic spin [17], and perturbative Coulomb cor-
rections [18].1

* Corresponding author.
E-mail addresses: sekoenig@theorie.ikp.physik.tu-darmstadt.de (S. König), 

leed@nscl.msu.edu (D. Lee).
1 In a different but related approach, two-nucleon scattering properties have been 

extracted by solving the system in an artificial harmonic trap [19], based on results 
obtained for cold atoms, where the trap is physical [20–22].

With improved numerical techniques and computational re-
sources enabling the calculation of systems with an increasing 
number of constituents, understanding the volume dependence of 
more complex systems is of timely relevance. Currently some re-
sults are available for three-particle systems, ranging from the gen-
eral theory [23–25] to explicit results for specific systems [26–29]. 
In this letter, we derive the volume dependence of N-particle 
bound states with finite-range interactions in d spatial dimensions 
and arbitrary total angular momentum. We also use finite-volume 
energies to extract asymptotic normalization coefficients, which 
are useful in halo effective field theory calculations of low-energy 
reactions of relevance for nuclear astrophysics [30–33]. The results 
presented here should have numerous and immediate applications 
for lattice QCD and lattice effective field theory calculations of nu-
clei. Moreover, our results also apply to lattice simulations of cold 
atomic systems, as discussed for example in Refs. [34–36].

When the separation is into two bound clusters, the leading 
correction is the same as the finite-volume correction for a two-
particle system, where the clusters are treated as though they were 
fundamental particles. While one may have guessed this result in 
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the case where the N-particle system is a weakly bound system 
of two clusters, we show that this formula continues to hold even 
when the N-particle system is more strongly bound than one or 
more of the constituent clusters.2

In the case where the separation is into three or more clusters, 
our derivation gives the leading exponential dependence. However, 
in this case there are also correction factors which scale as inverse 
powers of the periodic box size. We discuss these power-law fac-
tors here for a few special cases, while the general result will be 
addressed in a future publication.

2. Asymptotic behavior

We start with N nonrelativistic particles in d spatial dimensions 
with masses m1, · · ·mN . We are using units where h̄ = c = 1 and 
write the position-space wave function for a general state |ψ〉 as 
ψ(r1, · · · rN ). The Hamiltonian we consider is of the form

Ĥ1···N =
N∑

i=1

K̂ i + V̂ 1···N , (1)

where K̂ i = −∇2
i /(2mi), and in general we have nonlocal interac-

tions of every kind from two-particle up to N-particle interactions. 
We can write the total interaction as a sum of integral kernels,

V 1···N(r1, · · · rN ; r′
1, · · · r′

N) =
∑
i< j

W i, j(ri, r j; r′
i, r′

j)1/i,/j

+
∑

i< j<k

W i, j,k(ri, r j, rk; r′
i, r′

j, r′
k)1/i,/j,/k + · · · , (2)

where we use the shorthand notation

1/i1,···/ik =
∏

j �=i1,···ik

δd(r j − r′
j) (3)

for the spectator particles. We assume that the interactions respect 
Galilean invariance, and so the center-of-mass (c.m.) momentum is 
conserved, and the c.m. kinetic energy decouples from the rela-
tive motion of the N-particle system. We furthermore assume that 
every interaction has finite range, meaning that each W i1···ik van-
ishes whenever the separation between some pair of incoming or 
outgoing coordinates exceeds some finite length R .

We now consider an N-particle bound state with total c.m. mo-
mentum zero, binding energy B N , and wave function ψ B

N (r1, · · · rN ). 
In our notation the binding energy is the absolute value of the 
bound-state energy. Let us consider the asymptotic properties of 
this wave function when one of the coordinates becomes asymp-
totically large, while keeping the others fixed. Without loss of 
generality, we take the coordinate that we pull to infinity to be r1.

Let S refer to the set of coordinate points {r1, · · · rN } where r1

is greater than distance R from all other coordinates. Therefore in 
S there are no interactions coupling r1 to r2, · · · rN . By the assump-
tion of vanishing c.m. momentum, we can work with the reduced 
Hamiltonian

N∑
i=2

K̂ i − K̂ CM
2···N + V̂ 2···N + K̂ rel

1|N−1 , (4)

2 In the finite volume, all energy levels are discrete states. We refer to individual 
levels as bound and continuum/scattering states, respectively, if their extrapolated 
infinite volume energy is below or above the non-interacting N-body threshold. In 
the finite volume, bound states defined this way are characterized by an exponential 
dependence on the volume whereas continuum/scattering states have a power-law 
volume dependence.

where K̂ CM
2···N = −(∇2 + · · ·∇N )2/(2m2···N ) and

K̂ rel
1|N−1 = − (m2···N∇1 − m1∇2···N)2

2μ1|N−1m2
1···N

. (5)

We have written mn···N = mn + · · · + mN for the total mass of the 
(sub)system for the two cases n = 1 and n = 2. We have also in-
troduced μ1|N−1 as the reduced mass with 1

μ1|N−1
= 1

m1
+ 1

m2···N .

We note that the first three terms in Eq. (4) constitute the 
Hamiltonian Ĥ2···N of the {2, · · · N} subsystem with the c.m. ki-
netic energy removed, while the remaining K̂ rel

1|N−1 is the kinetic 
energy of the relative motion between particle 1 and the center of 
mass of the {2, · · · N} subsystem. In region S we use the separa-
tion of variables to expand ψ B

N (r1, · · · rN ) as a linear combination 
of products of eigenstates of Ĥ2···N with total linear momentum 
zero and eigenstates of K̂ rel

1|N−1.

For the moment we assume that the ground state of Ĥ2···N is 
a bound state with energy −B N−1 and wave function ψ B

N−1(r2,

· · · rN ). For simplicity we consider here the case where the rel-
ative motion wave function has zero orbital angular momentum 
and will relax this condition later in the discussion. Then, as 
r1|N−1 = ∣∣r1|N−1

∣∣ becomes large, we have

ψ B
N (r1, · · · rN) ∝ ψ B

N−1(r2, · · · rN)

× (κ1|N−1r1|N−1)
1−d/2 Kd/2−1(κ1|N−1r1|N−1),

(6)

where Kd/2−1 is a modified Bessel function of the second kind, 
r1|N−1 = r1 − (m2r2 + · · · + mN rN )/m2···N , and

κ1|N−1 = √
2μ1|N−1(B N − B N−1) . (7)

For the excited states of the N−1 system there will be terms anal-
ogous to Eq. (6), however they will be exponentially suppressed 
due to the larger energy difference with B N .

This discussion is readily generalized to the case of two clusters 
with arbitrary particle content. For this case we take the center of 
mass of A coordinates to infinity while keeping the relative sep-
arations within the A and N−A subsystems fixed. Without loss 
of generality, we can choose the A coordinates to be r1, · · · rA . 
Following steps analogous to the case A = 1, we again apply the 
separation of variables to the N-particle wave function and obtain

ψ B
N (r1, · · · rN)

∝ ψ B
A (r1, · · · rA)ψ B

N−A(rA+1, · · · rN)(κA|N−ArA|N−A)1−d/2

× Kd/2−1(κA|N−ArA|N−A) , (8)

where

rA|N−A = m1r1+···+mA rA
m1+···+mA

− mA+1rA+1+···+mN rN
mA+1+···+mN

, (9)
1

μA|N−A
= 1

m1+···+mA
+ 1

mA+1+···+mN
, (10)

κA|N−A = √
2μA|N−A(B N − B A − B N−A) , (11)

and −B A and −B N−A are the ground state energies of the 
A-particle and (N−A)-particle systems respectively. We have made 
the simplifying assumption that −B A and −B N−A are both bound-
state energies. If this is not true and one or both are instead 
energies associated with a scattering threshold, then Eq. (8) re-
mains correct up to additional prefactors that scale as inverse 
powers of κA|N−ArA|N−A . These factors arise from the integration 
over scattering states, and will be discussed in a future publication.
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