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Vortices are considered in relativistic Maxwell–Higgs systems in interaction with a neutral scalar field. 
The gauge field interacts with the neutral field via the presence of generalized permeability, and the 
charged and neutral scalar fields interact in a way dictated by the presence of first order differential 
equations that solve the equations of motion. The neutral field may be seen as the source field of the 
vortex, and we study some possibilities, which modify the standard Maxwell–Higgs solution and include 
internal structure to the vortex.
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1. Introduction

Vortices are planar structures that attain interesting topologi-
cal behavior and have a diversity of applications in high energy 
physics and in condensed matter. In high energy physics in par-
ticular, in the case of a relativistic field theory, the Maxwell–Higgs 
model is perhaps the standard model that supports vortex config-
urations, as firstly shown by Nielsen and Olesen [1] and then by 
other researches [2–4].

The standard Maxwell–Higgs model describes an Abelian gauge 
field Aμ minimally coupled to a charged scalar field ϕ and obeys 
the local U (1) symmetry. To develop vortex solutions, the model 
has to be enlarged to accommodate a potential of the Higgs type 
that develops spontaneous symmetry breaking. This model was 
long ago enlarged to accommodate the U (1) × U (1) symmetry, 
now with two gauge fields and two complex scalar fields that 
interact via an extension of the Higgs-like potential [5]. An inter-
esting result of this model was the possibility of adding internal 
structure to the solution, having superconducting properties. In 
[6] and in the more recent works [7–9] and in references therein 
one finds other studies related to the presence of superconducting 
strings.

Another line of investigation which also deals with the U (1) ×
U (1) symmetry concerns the study of a visible U (1) gauge field 
sector Aμ and another hidden U (1) gauge field sector Cμ that 
interact via the two gauge field tensors Fμν = ∂μ Aν − ∂ν Aμ and 
Gμν = ∂μCν − ∂νCμ . The presence of the hidden sector is moti-
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vated by supersymmetric extensions of the standard model and by 
superstring phenomenology and may somehow play a role in the 
study of dark matter. Studies on vortex in such models appeared 
before in [10,11], and in references therein.

Recently, in [12] we started a program to describe vortex struc-
tures in generalized models in (2, 1) spacetime dimensions, and in 
[13] we studied the case of analytic vortex solutions. Other inves-
tigations on vortices that enlarge the U (1) symmetry to accommo-
date new fields appeared before in [14–17], and more recently in 
[18,19] and in references therein. In particular, in [16,17] the U (1)

symmetry is enlarged to become U (1) × S O (3), to accommodate 
the S O (3) spin group that under specific circumstances may lead 
to vortex solutions that behave as spin vortices. In this case, the 
S O (3) symmetry is driven by the addition of neutral scalar fields 
that couple to the U (1) symmetry via the charged Higgs-like field.

These works motivated us to go further and investigate ex-
tended versions of the generalized model. Our ultimate goal is to 
deal with the case in which the U (1) × U (1) symmetry plays the 
basic role. In the current work, however, we follow another route 
and take the symmetry U (1) × Z2, coupling U (1) to Z2 symmetry 
via the addition of a neutral scalar field, with the coupling modu-
lated by the presence of generalized permeability. The inclusion of 
the Z2 symmetry which is controlled by the neutral field is per-
haps the simplest possibility to enlarge the U (1) symmetry, and 
below we show that it may modify the profile of the vortex in a 
way of current interest.

2. The model

We work in (2, 1) flat spacetime dimensions with the La-
grangian density

https://doi.org/10.1016/j.physletb.2018.03.041
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2018.03.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:bazeia@fisica.ufpb.br
https://doi.org/10.1016/j.physletb.2018.03.041
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.03.041&domain=pdf


486 D. Bazeia et al. / Physics Letters B 780 (2018) 485–490

L = −1

4
P (χ)Fμν F μν + |Dμϕ|2 + 1

2
∂μχ∂μχ − V (χ, |ϕ|) (1)

where χ is a real scalar field, the neutral field, ϕ is a com-
plex scalar field, the charged field, and Aμ is the Abelian gauge 
field. Also, Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic tensor and 
Dμ = ∂μ + ie Aμ stands for the covariant derivative. The poten-
tial is denoted by V (χ, |ϕ|) and may present terms that mix the 
real and complex scalar fields. We suppose P (χ) is a nonnega-
tive function of the real scalar field and use the metric tensor 
ημν = (1, −1, −1) and h̄ = c = 1. The equations of motion asso-
ciated to the Lagrangian density (1) are

∂μ∂μχ + 1

4
Pχ Fμν F μν + Vχ = 0 (2a)

DμDμϕ + ϕ

2|ϕ| V |ϕ| = 0, (2b)

∂μ

(
P F μν

) = Jν, (2c)

where the current is Jμ = ie(ϕDμϕ − ϕDμϕ) and Pχ = dP/dχ , 
Vχ = ∂V /∂χ , and V |ϕ| = ∂V /∂|ϕ|. By setting ν = 0 in equation 
(2c), one can show that for static field configurations the Gauss’ 
law is satisfied with A0 = 0. In this case, the vortex is electrically 
neutral since its electric charge vanishes.

To search for topological solutions, we consider static configu-
rations and suppose that

χ = χ(r), ϕ = g(r)einθ , �A = − θ̂

er
(a(r) − n), (3)

in which n ∈ Z is the vorticity. The functions χ(r), a(r) and g(r)
obey the boundary conditions

χ(0) = χ0, g(0) = 0, a(0) = n, (4)

χ(∞) = χ∞, g(∞) = v, a(∞) = 0. (5)

Here, χ0, χ∞ and v are parameters involved in the symmetry 
breaking of the potential. Considering the fields described by equa-
tions (3), the magnetic field has to satisfy

B = −F 12 = − a′

er
, (6)

where the prime stands for the derivative with respect to r. By 
using this, one can show the magnetic flux is quantized

� = 2π

∫
rdrB = 2πn

e
. (7)

The equations of motion (2) with the static fields (3) assume the 
form

1

r

(
rχ ′)′ = Pχ

a′2

2e2r2
+ Vχ , (8a)

1

r

(
rg′)′ = a2 g

r2
+ 1

2
V |ϕ|, (8b)

r

(
P

a′

er

)′
= 2eag2. (8c)

The energy density for static field configurations can be calcu-
lated standardly; one uses (3) to write

ρ = P
a′2

2e2r2
+ g′2 + a2 g2

r2
+ 1

2
χ ′2 + V . (9)

The equations of motion (8) are of second order and present cou-
plings between the fields. In order to get first order equations, we 

use the Bogomol’nyi procedure [2] and introduce an auxiliary func-
tion W = W (χ) to write the energy density (9) as

ρ = P (χ)

2

(
a′

er
± e(v2 − g2)

P (χ)

)2

+
(

g′ ∓ ag

r

)2

+ 1

2

(
χ ′ ∓ Wχ

r

)2

+ V −
(

e2

2

(
v2 − g2

)2

P (χ)
+ 1

2

W 2
χ

r2

)

± 1

r

(
W − a

(
v2 − g2

))′
,

(10)

where Wχ = dW /dχ . If the potential is written as

V (χ, |ϕ|) = e2

2

(
v2 − |ϕ|2)2

P (χ)
+ 1

2

W 2
χ

r2
, (11)

the energy becomes

E = 2π

∞∫
0

r dr
P (χ)

2

(
a′

er
± e(v2 − g2)

P (χ)

)2

+ 2π

∞∫
0

r dr
(

g′ ∓ ag

r

)2

+ 2π

∞∫
0

r dr
1

2

(
χ ′ ∓ Wχ

r

)2

+ E B ,

(12)

where

E B = ±2π

∞∫
0

dr
(

W − a
(

v2 − g2
))′

= 2π |W (χ(∞)) − W (χ(0))| + 2π |n|v2.

(13)

Since the three integrands in the energy (12) are all non-negative, 
we see that the energy is bounded by E B , i.e., E ≥ E B . If the solu-
tions obey the equations

χ ′ = ± Wχ

r
(14)

and

g′ = ±ag

r
, (15a)

− a′

er
= ±e

(
v2 − g2

)
P (χ)

, (15b)

the Bogomol’nyi bound is saturated, such that the energy is min-
imized to E = E B . Therefore, we have obtained three first order 
equations to study the problem, since they satisfy the equations of 
motion (8). As one knows, the fact that the solutions of the above 
first order equations (14) and (15) saturate the Bogomol’nyi bound 
implies stability against decay into similar lower energy configura-
tions.

It is worth commenting that the equation for the real scalar 
field (14) does not depend on the other fields. Thus, the real scalar 
field can be seen as a source to generate the vortex configuration, 
and we call it the source field. Although this is not apparent from 
the equations of motion (8), it is clear in the first order equations. 
Moreover, concerning the first order equations, it seems that the 
model one is dealing with is the bosonic portion of a larger, super-
symmetric theory, which will be further investigated elsewhere. 
Here we keep working with the above model, since it unveils sev-
eral interesting possibilities of investigations of current interest.
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