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We investigate the role that quasinormal modes can play in kink–antikink collisions, via an example 
based on a deformation of the φ4 model. We find that narrow quasinormal modes can store energy 
during collision processes and later return it to the translational degrees of freedom. Quasinormal modes 
also decay, which leads to energy leakage, causing a closing of resonance windows and an increase of 
the critical velocity. We observe similar phenomena in an effective model, a small modification of the 
collective-coordinate approach to the φ4 model.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well-known that kinks in nonintegrable models such as the 
φ4 theory can interact in a complicated way. One of the most in-
teresting features is the existence of a resonance structure in kink–
antikink collisions [1–3]. During the initial impact (or ‘bounce’), 
oscillational modes can be excited, storing energy which on recol-
lision can be given back to the translational modes of the kink and 
antikink. If the initial velocities are right, a significant fraction of 
the energy is returned, and kink–antikink pair can reseparate after 
one or more further bounces, albeit with the loss of some energy 
to radiation For other initial velocities less energy is returned, and 
the kink–antikink pair annihilate, leading to a ‘fractal’ structure of 
nested escape windows [4,5].

Such features were reported in many different models, in-
cluding the double sine Gordon model [3], a coupled nonlinear 
Schrödinger equation [6], and a two-component φ4 model [7–9]. 
A collision of a kink with a suitable impurity [10–12] or with a 
nontrivial boundary [13,14] can also lead to resonant behaviour 
and a fractal structure. Furthermore, a boundary collision can in-
duce boundary decay with the associated creation of an extra kink 
or antikink, resulting in a secondary resonant structure [13].

For a long time it was thought that the existence of an os-
cillational mode of the kink was a necessary condition for the 
formation of a resonant structure. More recently, it was shown 
that even in models such as the φ6 theory, where kinks have 
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no internal oscillational modes, a fractal structure can still be ob-
served, with modes trapped in the interval between the kink and 
antikink standing in for the localised modes [15]. This new mech-
anism can be expected to lead to a fractal structure in many cases 
of asymmetric kinks in models with different masses of small per-
turbations around different vacua [16–20]. Some efforts have also 
been made to reproduce the resonant structure of the φ4 theory 
in more realistic situations, such as graphene ribbons [21].

In this paper we exhibit yet another mechanism which can 
lead to resonant scattering. Energy can also be stored in narrow 
resonance modes, which in order to avoid confusion with the res-
onant structure will be called quasinormal modes throughout this 
paper. Quasinormal modes (QNM) are especially long-lived states 
which are in some senses similar to oscillational modes, though 
they satisfy purely outgoing boundary conditions and hence are 
not normalisable. They decay exponentially, losing energy due to 
their radiative tails.

1.1. Quasinormal modes

Quasinormal modes play important roles both in quantum and 
classical physics. They satisfy purely outgoing wave boundary con-
ditions, breaking the hermicity of the Hamiltonian. As a result, in 
quantum physics, they have complex energies E = Er + i�. The 
imaginary part � is responsible for exponential decay of the state. 
One of the earliest applications of this idea was in the explana-
tion of radioactivity: a nucleus forms an effective potential barrier 
which almost traps a particle, but which vanishes at larger dis-
tances, allowing the particle to tunnel through it. QNMs can be 
also seen as peaks of crosssections in scattering processes.
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Quasinormal modes are also often important in the classical 
evolution of dynamical systems, and indeed that is the context 
where they were first discussed [22]. The long-time dynamics are 
governed by the poles of the Green’s function [23–25], with the 
position of the pole determining the nature of the mode. Poles 
corresponding to real frequencies are normal oscillational modes 
which in the linear approximation last infinitely long. Poles cor-
responding to imaginary frequencies are unstable modes which 
grow exponentially fast. The poles for complex frequencies de-
scribe QNM, which represent decaying oscillations [23]. For mas-
sive fields so called threshold modes decaying according to some 
power law can also dominate the long time dynamics [24]. One 
of the most surprising features of QNM is that their dynamics can 
have nonlinear tails which start to dominate when the mode de-
cays below a certain amplitude [26].

The most notable current applications of QNMs are for signals 
of merging black holes. From gravitational wave measurements 
they can for example be used to find the masses of the colliding 
black holes [27–29].

2. The model

2.1. Recalling the φ4 model

In the following we limit our considerations to 1+1 dimen-
sional theories of a single scalar field:

L = 1

2
φ̇2 − 1

2
φ′2 − U (φ) (1)

The first example of the resonant scattering mechanism was found 
for the φ4 theory, with the field theory (scalar) potential

U (φ) = 1

2
(φ2 − 1)2 ≡ W . (2)

The two vacuum configurations φ(x) = φ± = ±1 break the Z2

symmetry of the model; kinks and antikinks are stationary solu-
tions which interpolate between these vacua. The static kink solu-
tion can be found from the BPS equation

φ′
K (x) = √

2U (x) , (3)

with a solution

φK ,K̄ (x) = ± tanh(x) . (4)

Small perturbations around the kink φ(x, t) = φK (x) + eiωtη(x) sat-
isfy the linearised equation

−η′′ + V (x)η = ω2η, V (x) = U ′′(φ(x))

∣∣∣∣
φ=φK

(5)

which has the form of a Schrödinger equation with a ‘potential’ for 
the linearised fluctuations given by V (x).1 In this particular case 
this is the famous Pöschl–Teller potential

V (x) = 4 − 6

cosh2(x)
(6)

and it supports two bound states, with frequencies ω0 = 0 and 
ωd = √

3. The first is the translational mode of the kink, while 
the second is referred to as the oscillational mode. The existence 
of this oscillational mode leads to the resonance windows dur-
ing kink–antikink collisions. Some of the initial kinetic energy is 

1 To avoid confusion with the field theory potential U , we will sometimes refer 
to V as the linearised potential.

stored in the oscillational mode, which for appropriate (resonant) 
initial conditions can be given back to the translational degrees 
of freedom in a subsequent recollision. The kink and antikink can 
bounce multiple times and either separate or end their existence 
as an oscillon. The resonant structure is very complicated, exhibit-
ing fractal-like properties. The model has been studied extensively 
using both numerical and analytical methods. An effective model 
was introduced [1,2] which later was used in many variants and 
approximations [4] and reproduced reasonably well both the frac-
tal structure, and the critical velocity above which no multibounce 
windows are observed. However, it is important to note that the 
initial effective model contained some errors, which were cor-
rected in [30].

2.2. Designing the model

Our aim is to study the influence of QNM on collision scenarios 
similar to those known in the literature. The kink of the standard 
φ4 model, defined above, does not have QNM in its spectrum of 
small perturbations. This is a rare feature, in this case a conse-
quence of the reflectionlessness nature of the linearised potential 
for fluctuations about the φ4 kink. Our strategy will be to modify 
the field theory potential W so as to turn the oscillational mode 
about the kink into a quasinormal mode. The linearised potential 
for the φ4 kink tends to the asymptotic value V (|x| → ∞) = 4, 
meaning that waves with frequencies below 2 cannot propagate. 
However if at some distance from the kink this potential would 
decrease further, changing its asymptotic to V (|x| → ∞) = m2 < 4, 
waves with frequencies below 2 but above m would become 
able to propagate. In particular if m <

√
3 the oscillational mode 

could tunnel through the barrier and would become a quasinor-
mal mode. We will use of this observation to design a model for 
which the linearised potential for fluctuations about a static kink 
is very similar to that of the φ4 model and yet its height decreases 
as |x| → ∞.

It is worth mentioning that having the linearised potential V (x)
one can in principle reconstruct the field theory potential U (φ)

[31,32]. However, except some rare cases, the procedure gives a 
very complicated potential which only can be found numerically, 
so we will not adopt this approach. Instead, we look for a field 
theory potential which is very similar to the φ4 potential, U ≈ W , 
when the field is far away from either vacuum. But when the field 
approaches one or other vacuum, which will happen far from the 
kink, the behaviour of the potential should change. Recall that 
V (x) = U ′′(φ(x)). For φ = ±1 the linearised potential is equal to 
m2, which is the squared mass of the scalar field. For the φ4 the-
ory with our normalisations, this mass is equal to 2. The second 
feature which we want for our field theory potential is that its 
second derivative around the vacuum φ = ±1 would be m2 < 3 to 
allow the oscillational mode to tunnel through the barrier and to 
become the QNM.

We have found one such family of field theory potentials to be

U (φ, ε) = W + m2 − 4

4

εW

W + ε
, (7)

which for ε = 0 restores the standard φ4 potential. For ε > 0 the 
potential has a shape close to φ4, but near vacua (where W � ε) it 
behaves as a field with mass m. Unless stated otherwise through-
out the paper m = 1. Some examples of this potential for different 
values of ε are shown in Fig. 1.

The φ4 kink approaches its vacuum as

φφ4(x) = tanh x ≈ 1 − 2e−2x (8)

For small values of ε , the additional term in the potential becomes 
important when W ≈ ε , which is for
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