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We solve analytically the renormalization-group equation for the potential of the O (N)-symmetric scalar 
theory in the large-N limit and in dimensions 2 < d < 4, in order to look for nonperturbative fixed points 
that were found numerically in a recent study. We find new real solutions with singularities in the higher 
derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative 
real axis.
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1. Introduction

The O (N)-symmetric scalar theories have served for decades as 
the testing ground of techniques developed for the investigation 
of the critical behaviour of field theories and statistical models. It 
comes, therefore, as a surprise that a recent study [1] has found 
that their phase structure may be much more complicated that 
what had been found previously. In particular, it is suggested that, 
in dimensions 2 < d < 4, several nonperturbative fixed points ex-
ist, which had not been identified until now. The large-N limit 
[2–7] offers the possibility to identify such fixed points analyt-
ically, without resorting to perturbation theory. We shall con-
sider the theory in this limit through the Wilsonian approach to 
the renormalization group (RG) [8]. Its various realizations [9–13]
give consistent descriptions of the fixed-point structure of the 
three-dimensional theory [14], in agreement with known results 
for the Wilson–Fisher (WF) fixed point [15] and the Bardeen–
Moshe–Bander (BMB) endpoint of the line of tricritical fixed points 
[16–18].

We shall employ the formalism of ref. [11], leading to the ex-
act Wetterich equation for the functional RG flow of the action. 
For N → ∞ the anomalous dimension of the field vanishes and 
higher-derivative terms in the action are expected to play a mi-
nor role. This implies that the derivative expansion of the action 
[19–21] can be truncated at the lowest order, resulting in the 

* Corresponding author.
E-mail addresses: ariskatsis @phys .uoa .gr (A. Katsis), ntetrad @phys .uoa .gr

(N. Tetradis).

local potential approximation (LPA) [9,13,14,22]. The resulting evo-
lution equation for the potential is exact in the sense explained in 
ref. [14]. It has been analysed in refs. [23,24] in three dimensions. 
In this work, we extend the analysis over the range 2 < d < 4, in 
an attempt to identify new fixed points.

2. Evolution equation for the potential

We consider the theory of an N-component scalar field φa with 
O (N) symmetry in d dimensions. We are interested in the func-
tional RG evolution of the action as a function of a sharp infrared 
cutoff k. We work within the LPA approximation, neglecting the 
anomalous dimension of the field and higher-derivative terms in 
the action. We define ρ = 1

2 φaφa , a = 1...N , as well as the rescaled 
field ρ̃ = k2−dρ . We denote derivatives with respect to ρ̃ with 
primes. We focus on the potential Uk(ρ) and its dimensionless ver-
sion uk(ρ̃) = k−dUk(ρ). In the large-N limit and for a sharp cutoff, 
the evolution equation for the potential can be written as [23]

∂u′

∂t
= −2u′ + (d − 2)ρ̃

∂u′

∂ρ̃
− NCd

1 + u′
∂u′

∂ρ̃
, (1)

with t = ln(k/�) and C−1
d = 2dπd/2�(d/2). This equation can be 

considered as exact, as explained in ref. [14]. The crucial assump-
tion is that, for N → ∞, the contribution from the radial mode 
is negligible compared to the contribution from the N Goldstone 
modes.

The most general solution of eq. (1) can be derived with the 
method of characteristics, generalizing the results of ref. [23]. It is 
given by the implicit relation
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d − 2
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(
1,1 − d

2
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,−u′

)

= e(2−d)t G
(

u′e2t
)

− NCd

d − 2
e(2−d)t

2 F1

(
1,1 − d

2
,2 − d

2
,−u′e2t

)
, (2)

with 2 F1 (a,b, c, z) a hypergeometric function. The function G is 
determined by the initial condition, which is given by the form 
of the potential at the microscopic scale k = �, i.e. u′

�(ρ̃) =
�−2U ′

�(ρ). G is determined by inverting this relation and solv-
ing for ρ̃ in terms of u′ , so that G(u′) = ρ̃(u′)|t=0. The effective 
action is determined by the evolution from k = � to k = 0.

We are interested in determining possible fixed points arising 
in the context of the general solution (2). Infrared fixed points are 
approached for k → 0 or t → −∞. For finite u′ , the last argument 
of the hypergeometric function in the rhs of eq. (2) vanishes in this 
limit. Using the expansion

2 F1

(
1,1 − d

2
,2 − d

2
,−z

)
= 1 + d − 2

4 − d
z − d − 2

6 − d
z2 +O(z3) (3)

we obtain

ρ̃ − NCd

d − 2
2 F1

(
1,1 − d

2
,2 − d

2
,−u′

)

= e(2−d)t
(

G
(

u′e2t
)

− NCd

d − 2

)
. (4)

The t-dependence in the rhs must be eliminated for a fixed-point 
solution to exist. This can be achieved for appropriate functions G . 
For example, we may assume that the initial condition for the po-
tential at k = � or t = 0 is u�(ρ̃) = λ�(ρ̃ −κ�)2/2, so that G(z) =
κ� + z/λ� . Through the unique fine tuning κ� = NCd/(d − 2) the 
rhs vanishes for t → −∞. The scale-independent solution, given by 
the implicit relation

ρ̃ − NCd

d − 2
2 F1

(
1,1 − d

2
,2 − d

2
,−u′∗

)
= 0, (5)

describes the Wilson–Fisher fixed point.
Near the minimum of the potential, where u′∗ � 0, we have

ρ̃ − NCd

d − 2
− NCd

4 − d
u′∗ + NCd

6 − d
(u′∗)2 +O

(
(u′∗)3

)
= 0. (6)

From this relation we can deduce that the minimum is located at 
ρ̃ = NCd/(d − 2) ≡ κ∗ , while the lowest derivatives of the potential 
at this point are u′′∗(κ∗) = (4 − d) (NCd)

−1, u′′′∗ (κ∗) = 2(4 − d)3/

(6 − d) (NCd)
−2. For large u′∗ , we can use the expansion
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in order to obtain the asymptotic form of the potential: u∗(ρ̃) ∼
ρ̃d/(d−2) . This result is consistent with the expected critical ex-
ponent δ = (d + 2)/(d − 2) for vanishing anomalous dimension. 
Finally, we note that the hypergeometric function has a pole at 
z = −1. This implies that, in the regions of negative u′ , the un-
rescaled potential Ukρ̃) becomes flat, with its curvature scaling as 
−k2 for k → 0 [25].

We are interested in the existence of additional fixed points. In 
d = 3 it is known that, apart from the Wilson–Fisher fixed point, 
a line of tricritical fixed points exists, terminating at the BMB fixed 

point [16–18]. In the following section we describe the flows be-
tween these fixed points in terms of the potential, in order to 
obtain useful intuition for the investigation of the case of gen-
eral d. Our analysis extends the picture of refs. [23,24] away from 
the fixed points.

3. d = 3

For d = 3, the solution (2) reproduces the one presented in 
ref. [23], through use of the identity
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In order to deduce the phase diagram of the three-dimensional 
theory, we consider a bare potential of the form

u′
�(ρ̃) = λ�(ρ̃ − κ�) + ν�(ρ̃ − κ�)2. (9)

The solution (2) can be written as
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,−u′
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= e−t
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(

u′e2t
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− κ∗ 2 F1

(
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2
,−u′e2t

)]
, (10)

with κ∗ = N/(4π2). The function G(z) is obtained by solving 
eq. (9) for ρ̃ as a function of u′

� . It is given by

G(z) = κ� + 1

2ν�

(
−λ� ±

√
λ2

� + 4ν� z

)
, (11)

with the two branches covering different ranges of ρ̃ .
Let us impose the fine tuning κ� = κ∗ , which puts the the-

ory on the critical surface. For λ� 
= 0, we have G(u′e2t) � κ∗ +
u′e2t/λ� for t → −∞. We also have 2 F1

(
1,−1/2,1/2,−u′e2t

) �
1 + u′e2t . As a result, the rhs of eq. (10) vanishes in this limit. 
The evolution leads to the Wilson–Fisher fixed point discussed in 
the previous section. The additional fine tuning λ� = 0 results in 
a different situation. For t → −∞ the rhs of eq. (10) becomes 
t-independent and we obtain

ρ̃ − κ∗ 2 F1

(
1,−1

2
,

1

2
,−u′∗

)
= ± 1√

ν�

√
u′∗. (12)

A whole line of tricritical fixed points can be approached, para-
metrized by ν� [24]. Each of them is expected to be unstable 
towards the Wilson–Fisher fixed point.

The relative stability of the fixed points can be checked ex-
plicitly by considering the full solution (2). In Fig. 1 we depict 
the evolution of the potential, as predicted by this expression, for 
λ� = 10−7 and ν� = 0.3. We have set NC3 = 1 through a redef-
inition of ρ̃ and u′ . We have indicated by UV the initial form of 
the potential at k = � and with IR its form for k → 0. The con-
tinuous lines depict the potential at various values of t , with step 
equal to −1, during its initial approach to the tricritical fixed point 
(TP). The dashed lines depict its subsequent evolution towards the 
Wilson–Fisher fixed point (WF).

We shall not analyse in detail the tricritical line, as this has 
been done elsewhere [16–18,24]. We note that it connects the 
Gaussian fixed point, for ν� = 0, with a point approached for a 
value of ν� for which the solution of eq. (12) diverges at the ori-
gin. This endpoint of the tricritical line is the BMB fixed point [16]. 
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