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We study the charge response in complex frequency plane and the quasi-normal modes (QNMs) of 
the boundary quantum field theory with momentum dissipation dual to a probe generalized Maxwell 
system with Weyl correction. When the strength of the momentum dissipation α̂ is small, the pole 
structure of the conductivity is similar to the case without the momentum dissipation. The qualitative 
correspondence between the poles of the real part of the conductivity of the original theory and the 
ones of its electromagnetic (EM) dual theory approximately holds when γ → −γ with γ being the Weyl 
coupling parameter. While the strong momentum dissipation alters the pole structure such that most of 
the poles locate at the purely imaginary axis. At this moment, the correspondence between the poles of 
the original theory and its EM dual one is violated when γ → −γ . In addition, for the dominant pole, 
the EM duality almost holds when γ → −γ for all α̂ except for a small region of α̂.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The quantum critical (QC) dynamics is a long-standing im-
portant issues in strongly coupling condensed matter systems, in 
which the perturbative techniques in traditional field theory un-
fortunately lose its power. An alternative method is the AdS/CFT 
correspondence [1–4], which maps a strongly coupled quantum 
field theory to a weakly coupled gravitational theory in the large 
N limit. By this way, the holographic QC dynamics at zero den-
sity, dual to a probe Maxwell field coupled to the Weyl tensor 
Cμνρσ in the Schwarzschild-AdS (SS-AdS) in bulk, has been widely 
studied in [5–12]. Since the Weyl tensor is taken into account, it 
exhibits non-trivial frequency dependent conductivity. In particu-
lar, depending on the sign of the coupling parameter γ , a Damle–
Sachdev (DS) peak [13] resembling the particle response or a dip 
resembling the vortex response is observed in optical conductiv-
ity1 [5]. It is analogous to that of the superfluid-insulator quantum 
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(P. Liu).
1 Those kind of peak and dip features have also been observed in probe branes 

setups [14] and just higher terms in F 2 with F being the Maxwell field strength 
[15]. Although the role and the presence of a Drude-like peak in the optical con-
ductivity have been partially explained for the probe brane case [14], it is still not 

critical point (QCP) [5–7]. Further, the charge response from higher 
derivative (HD) theory is studied, in which we have an arbitrarily 
sharp Drude-like peak or vanishing DC conductivity depending on 
the coupling parameter [16]. Of particular interest is that the be-
havior of the holographic HD system is very similar to the O (N)

N Lσ M model for large-N [13]. Another important progress is the 
construction of neutral scalar hair black brane in bulk by intro-
ducing the coupling between Weyl tensor and neutral scalar field, 
which is dual to QC dynamics and the one away from QCP in the 
boundary field theory [17,18].

Also, we can introduce the momentum dissipation, imple-
mented by a pair of axionic fields linearly dependent on spatial 
coordinates [34], into the holographic QC systems studied in [5,6,
8–12], which is away from QCP, to explore the corresponding ef-
fects. We observe that for the 4 derivative theory, the momentum 
dissipation drives the peak and dip into each other [19], while 
for the 6 derivative theory, similar behaviors are not observed 
[20]. Another appealing phenomena for 4 derivative theory is that 
there is a specific value of the momentum dissipation strength, 
i.e., α̂ = 2/

√
3, for which the particle-vortex duality exactly re-

mains [19]. In this paper, we want to extend the previous works 
[19] to the charge response in complex frequency plane. We shall 

so clear why there is a Drude-like peak and to what it is connected. More efforts 
and attempts are deserved to further pursuit in future.
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particularly focus on the properties of the quasi-normal modes 
(QNMs), which corresponds to the poles of the retarded Green’s 
function for the dual boundary CFT (see [21–33] and references 
therein). Our paper is organized as follows. In Section 2, we in-
troduce the holographic framework, including the Einstein-axions 
(EA) theory, which is the background geometry dual to a spe-
cific thermal excited state with momentum dissipation, and the 
4 derivative theory without electromagnetic (EM) duality, which is 
regarded as the probe on top of the EA background geometry. And 
then, we calculate the conductivity in the complex frequency plane 
in Section 3. We are in particular interested in the QNMs of our 
present models, which are presented in Section 4. The conclusions 
and discussions are summarized in Section 5.

2. Holographic framework

We consider a specific thermal state with homogeneous disor-
der, which is holographically described by the EA theory [34] (also 
refer to [35–41] and references therein)

S0 =
∫

d4x
√−g

(
R + 6 − 1

2

∑
I=x,y

(∂φI)
2
)

, (1)

where φI = αxI with I = x, y and α being a constant. In this ac-
tion, there is a negative cosmological constant 	 = −6, which sup-
ports an asymptotically AdS spacetimes.2 The EA action (1) gives a 
neutral black brane solution [34]

ds2 = 1

u2

(
− f (u)dt2 + 1

f (u)
du2 + dx2 + dy2

)
,

f (u) = (1 − u)p(u) , p(u) =
√

1 + 6α̂2 − 2α̂2 − 1

α̂2
u2 + u + 1 .

(2)

u = 0 is the asymptotically AdS boundary while the horizon locates 
at u = 1. Here we have parameterized the black brane solution 
by α̂ = α/4π T with the Hawking temperature T = p(1)/4π . Note 
that for the particular way we adopt to break translations, i.e., 
the axionic fields, the original (spacetime translations) × (internal 
translations) group is broken to the diagonal subgroup such that 
the geometry is homogeneous [42,43].

On top of the geometry background (2), we consider the fol-
lowing 4 derivative theory [5] (also see [9–12,16,19,20])

S A =
∫

d4x
√−g

(
− 1

8g2
F

Fμν Xμνρσ Fρσ

)
, (3)

where

X ρσ
μν = I ρσ

μν − 8γ C ρσ
μν , I ρσ

μν = δ
ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν . (4)

The new tensor X in the above equation possess the following 
symmetries

Xμνρσ = X[μν][ρσ ] = Xρσμν . (5)

When we set X ρσ
μν = I ρσ

μν , the generalized Maxwell theory (3)
reduces to the standard version. And then, we can write down the 
equation of motion from the action (3),

∇ν(Xμνρσ Fρσ ) = 0 . (6)

Next, we can construct the corresponding dual EM theory, 
which is [5]

2 Here, without loss of generality we have set the AdS radius L = 1 for simplicity.

S B =
∫

d4x
√−g

(
− 1

8ĝF
Gμν X̂μνρσ Gρσ

)
, (7)

where ĝ2
F ≡ 1/g2

F and Gμν ≡ ∂μBν − ∂ν Bμ is the dual field 
strength. The tensor X̂ satisfies

X̂ ρσ
μν = −1

4
ε

αβ
μν (X−1)

γ λ

αβ ε
ρσ

γ λ ,
1

2
(X−1)

ρσ
μν X αβ

ρσ ≡ I αβ
μν .

(8)

And then the equation of motion of the dual theory (7) can be 
written as

∇ν( X̂μνρσ Gρσ ) = 0 . (9)

For the standard Maxwell theory in four dimensional bulk 
spacetimes, X̂ ρσ

μν = I ρσ
μν , which indicates that both the theories 

(3) and (7) are identical and so the Maxwell theory is self-dual. 
The coupling term between the Weyl tensor and the Maxwell field 
strength breaks such self-duality. But for small γ , since

(X−1)
ρσ

μν = I ρσ
μν + 8γ C ρσ

μν +O(γ 2) , (10)

X̂ ρσ
μν = (X−1)

ρσ
μν +O(γ 2) (11)

we have an approximate duality between the theories (3) and (7)
with the change of the sign of γ .

3. Conductivity in the complex frequency plane

In our previous works [19], the conductivity on the real fre-
quency axis was numerically studied. Here, we extend the study 
from real frequency axis to complex frequency plane, ω ≡ Reω +
iImω ∈ C. To this end, we turn on the perturbation of the gauge 
field along y direction like A y(t, u) ∼ e−iωt A y(u). And then, the 
perturbative equation can be written down [5,19]

A′′
y +

( f ′

f
+ X ′

6

X6

)
A′

y + p2ω̂2

f 2

X2

X6
A y = 0 , (12)

where Xi , i = 1, . . . , 6, are the components of X B
A defined 

as X B
A = {X1(u), X2(u), X3(u), X4(u), X5(u), X6(u)}, with A, B ∈

{tx, ty, tu, xy, xu, yu}. Note that X1(u) = X2(u) and X5(u) = X6(u)

due to the isotropy. In addition, the dimensionless frequency 
ω̂ ≡ ω

4π T = ω
p

, with p ≡ p(1) = 4π T , has been introduced in the 
perturbative equation (12). Next, we can numerically solve the 
Eq. (12) with the ingoing condition at horizon on top of com-
plex frequency plan and read off the optical conductivity in terms 
of

σ(ω) = ∂u A y(u, ω̂)

iωA y(u, ω̂)
. (13)

By letting Aμ → Bμ and Xi → X̂i = 1/Xi , the corresponding equa-
tion of motion for the dual theory can be obtained.

The numerical results are shown in Fig. 1, 2, 3 and 4 for the 
representative α̂ and the two values of γ satisfying the bound, 
γ = ±1/12. We find that all the poles of the conductivity are in 
the lower-half plane (LHP), which indicates that the perturbative 
modes are stable ones. As a check on our numerics, we show the 
conductivity σ (left panels) and its dual σ∗ (right panels) in the 
LHP for |γ | = 1/12 (the panels above are for γ = 1/12 and the 
ones below for γ = −1/12) and α̂ = 0 in the complex frequency 
plane, which have been obtained in [9]. Our results are in excellent 
agreement with that in [9]. For comparison, we firstly summary 
the main properties of the pole structure as what follows.
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