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In the context of upcoming new physics searches at the LHC, we investigate the impact of
multidimensional differential rates in typical LHC analyses. We discuss the properties of shape 
information, and argue that multidimensional rates bring limited information in the scope of a discovery, 
but can have a large impact on model discrimination. We also point out subtleties about systematic 
uncertainties cancellations and the Cauchy–Schwarz bound on interference terms.
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1. Introduction

In modern High Energy Physics, the use of large datasets has 
become commonplace. In two areas in particular, Particle Physics 
and Cosmology, the forefront of discoveries and characterisation of 
new phenomena relies on extraction of information from complex 
datasets produced by experiments like Planck [1] and the LHC [2]. 
In both fields, a precise theoretical paradigm is used to interpret 
the data (�CDM and SM, respectively) and the search for new phe-
nomena depends then on identifying subtle deviations within the 
data, often relying on machine learning techniques. For example, 
the discovery rare SM processes, like mono-top [3] and Higgs de-
cays to tau-leptons [4], has been achieved using this methodology.

On the theoretical side, these multivariate techniques obscure 
the physical understanding of which variables drive the analysis, 
making the re-interpretation of results very difficult and in general 
hindering the public use of the data. Yet more detailed informa-
tion, in particular differential rates, is required to advance the pro-
gramme of searching for a new paradigm beyond the standard one. 
For example, the use of differential information on Higgs produc-
tion [5] has proven key to pushing the limits of understanding the 
impact of possible new phenomena in the Higgs boson properties.

In this paper we investigate the advantages and limitations of 
multidimensional shape information in searching for new physics 
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and present two case studies, the new physics search in the con-
text of the SM Effective Field Theory (SMEFT) and the charac-
terisation of the quantum numbers of a new resonance. These 
case studies, together with the material collected in the Appendix, 
give examples of how differential distributions can be exploited by 
theorists. Currently, experiments provide mostly one-dimensional 
distributions, and only rarely two-dimensional information – a no-
table exception to this trend is provided by the ATLAS analysis [6]
of h → γ γ , which made public the 2D differential distributions in 
pT of the Higgs and number of jets. This work is also meant as 
an incentive for experiments to provide systematically differential 
distributions in an exploitable form.

2. Statistical basics

In this section we set the notation of the statistical analysis. 
We denote phase space by D, and consider a binning of D in d
dimensions. The bins are set along a dimension i ∈ (1 . . .d) and 
labelled by ri , with the coordinates (r1, . . . , rd) of a bin denoted r, 
and the associated piece of phase space Dr . The observed event 
number in the bin r is denoted n̂r , and the expected event number 
for a given value of the underlying parameter θ is denoted nr(θ). 
Total number of observed events is n̂ = ∑

r n̂r and the expected 
total number events is n = ∑

r nr .
For further convenience one also introduces the d-dimensional 

density of expected events f X (x), where X = (Xi) denotes the 
set of binned variables. f X (x) is simply the differential event rate 

https://doi.org/10.1016/j.physletb.2018.01.008
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2018.01.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:ff83@sussex.ac.uk
mailto:sylvain@ift.unesp.br
mailto:v.sanz@sussex.ac.uk
https://doi.org/10.1016/j.physletb.2018.01.008
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.01.008&domain=pdf


36 F. Ferreira et al. / Physics Letters B 778 (2018) 35–42

normalised by the total event rate. The expected event number in 
a bin r is then given by

nr = n

∫
Dr

f X (x)dx . (1)

2.1. Likelihood

The likelihood function L is defined as the conditional proba-
bility of obtaining the observed data given a hypothesis, taken as 
a function of this hypothesis. For a hypothesis H with a set of pa-
rameters θ ,

L(θ) ≡ Pr(data|H, θ) . (2)

The likelihood function can be defined up to an overall constant 
factor.

The events counted in each of the bins are statistically indepen-
dent, hence the likelihood factorises as

L =
∏

r

Lr . (3)

The event number in every bin follows a Poisson statistics, so that 
the likelihood function in the bin r is given by

Lr(θ) = nr(θ)n̂r e−nr(θ) . (4)

For a given integrated luminosity L, nr(θ) is given by the event 
rate on the bin, nr(θ) =Lσr(θ).

The likelihood can be formally factored in a Poisson term Ltot

containing the information about the total rate and a term Lshape

containing the information about the shape of the differential dis-
tribution, so that L(θ) = Ltot(θ)Lshape(θ) with

Ltot(θ) = n(θ)n̂e−n(θ) (5)

Lshape(θ) =
∏

r

(
nr(θ)

n(θ)

)n̂

. (6)

We stress this feature remains valid beyond Poisson statistics, 
when systematic uncertainties are also included in the likelihood. 
Indeed, it is always possible to split the nuisance parameters 
into as subset affecting only Ltot(θ) and a subset affecting only 
Lshape(θ).

Finally, in the limit where bin size is small enough so that every 
bin contains only zero or one event, Lshape(θ) tends to the classical 
“unbinned” likelihood expressed in terms of the continuous prob-
ability density function of the events along the previously-binned 
variable X ,

Lunbinned
shape (θ) =

n̂∏
I=1

f θ
X (xI ) , (7)

where the xI are the values of X associated to each of the observed 
events. The f θ

X has been defined in Eq. (1).

2.2. Credible regions and hypothesis testing

We adopt the framework of Bayesian statistics.1 The model pa-
rameters are given an a-priori probability density π(θ), called “pri-
or”, that can encode both subjective and objective information. The 

1 The Bayesian framework is consistent with the “likelihood principle”, which 
states that all experimental information is encoded in the likelihood function. This 
is not the case of, for example, frequentist p-values.

“posterior” density is defined as p(θ) ∝ L(θ)π(θ), it provides the 
preferred regions of θ ones data are taken into account. The shape 
of the prior becomes irrelevant once enough data are accumulated, 
i.e. when the posterior is data-dominated.2

A so-called 1 − α credible region of highest density is defined 
by the domain �1−α = {θ | p(θ) > p1−α}, where p1−α is deter-
mined by the fraction of integrated posterior∫

�1−α dθ p(θ)∫
�

dθ p(θ)
= 1 − α , (8)

� being the whole parameter space. We will use the credible re-
gions associated with 1 − α = {68.27% , 95.45% , 99.73%}.3

Comparison between two hypotheses H0 and H1 is done by 
means of the Bayes factor

B01 =
∫
�1

L(θ1)π1(θ1)∫
�0

L(θ0)π0(θ0)
, (9)

where the π0,1 are the priors for hypotheses H0,1 respectively. The 
Bayes factor is interpreted using the Jeffreys’ scale [7], which asso-
ciates weak, moderate and strong evidence in favour of H0 to the 
threshold values log B01 ∼ 1, 2.5, 5 (i.e. B01 ∼ 3, 12, 150).

The Bayes factor framework can be used in the context of new 
physics searches. In order to assess that the data favour a hypothe-
sis where a parameter θ is different from a given value θ0 one has 
to compare the H1 hypothesis to H0 ≡ H1|θ = θ0 (see also [7], [8]). 
In the context of effective operators, H1 can for instance be the SM 
deformed by higher dimensional operators (the SMEFT), while H0

is the SM. Defining B0 ≡ 1/B01, we have

B0 =
∫
�

L(θ)π(θ)

L(θ0)
, (10)

that we refer to as the discovery Bayes factor. The test assesses that 
θ �= θ0 for B0 > 1, using the thresholds given above.

2.3. Asimov (projected) data

In order to evaluate the sensitivity of a future analysis, mea-
surement, or experiment, one can rely on imaginary, speculative 
data. That is, instead of introducing actual observed data in the 
likelihood Eq. (2), one can instead introduce speculative data com-
ing for instance from a simulation of the experiment. We refer to 
these as projected data.

An important subtlety, well discussed in [9], is that an assump-
tion has to be made on the statistical fluctuations present in the 
projected data. Along this paper, we will simply consider the case 
where no statistical fluctuations are present in the projected data. 
A dataset satisfying this condition is sometimes referred to as an 
“Asimov” dataset [9].

The event numbers in the projected dataset assuming no statis-
tical fluctuations and the presence of an operator with coefficient 
c′ are then simply given by L σr(c′). In practice, these rates have 
to be estimated by MonteCarlo simulations, just like the expected 
ones.

2 The prior has however to satisfy basic physical conditions, such as keeping an 
event number positive in order to avoid singularities in the posterior. As a general 
rule, the posterior should be data-dominated in the limit of many data, otherwise 
the inference process cannot happen.

3 Note that confidence regions are not uniquely defined, but the method of high-
est density is the most commonly used and arguably the most natural.



Download English Version:

https://daneshyari.com/en/article/8186976

Download Persian Version:

https://daneshyari.com/article/8186976

Daneshyari.com

https://daneshyari.com/en/article/8186976
https://daneshyari.com/article/8186976
https://daneshyari.com

