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Bayesian neural network (BNN) approach is employed to improve the nuclear mass predictions of various 
models. It is found that the noise error in the likelihood function plays an important role in the predictive 
performance of the BNN approach. By including a distribution for the noise error, an appropriate value 
can be found automatically in the sampling process, which optimizes the nuclear mass predictions. 
Furthermore, two quantities related to nuclear pairing and shell effects are added to the input layer 
in addition to the proton and mass numbers. As a result, the theoretical accuracies are significantly 
improved not only for nuclear masses but also for single-nucleon separation energies. Due to the 
inclusion of the shell effect, in the unknown region, the BNN approach predicts a similar shell-correction 
structure to that in the known region, e.g., the predictions of underestimation of nuclear mass around 
the magic numbers in the relativistic mean-field model. This manifests that better predictive performance 
can be achieved if more physical features are included in the BNN approach.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Mass is a fundamental property of atomic nuclei. It can be em-
ployed to extract various nuclear structure information, such as 
nuclear pairing correlation, shell effect, deformation transition, and 
so on [1]. Nowadays it has been also widely used to determine nu-
clear effective interactions [2]. Moreover, nuclear mass is essential 
to determine the nuclear reaction energy in astrophysics and hence 
plays a crucial role in understanding the origin of elements in Uni-
verse [3]. In addition, the accurate mass determination is very im-
portant to test the unitarity of Cabibbo–Kobayashi–Maskawa ma-
trix [4,5].

Measurements of nuclear mass have achieved great progress 
in recent years [6,7] and about 3000 nuclear masses have been 
measured up to now [8]. However, the accurate predictions of nu-
clear mass are still a great challenge for theoretical models, due 
to the difficulties in the exact theory of nuclear interaction and 
in the quantum many-body calculations. Nowadays three types of 
nuclear models are mainly used in global mass predictions: macro-
scopic, macroscopic–microscopic, and microscopic mass models. 
The Bethe–Weizsäcker (BW) mass formula is the first model used 
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to estimate nuclear masses [9,10], which belongs to the macro-
scopic type. It assumes the nucleus is similar to a charged liquid 
drop, so the microscopic effects, such as shell effect, cannot be 
well described. By taking into account the important corrections 
related to the microscopic effects, the macroscopic–microscopic 
models are developed, such as the finite-range droplet model 
(FRDM) [11] and the Weizsäcker–Skyrme (WS) model [12]. The 
microscopic mass models are mainly rooted in the density func-
tional theory, which are more complicated but potentially have a 
better ability of extrapolation. In the non-relativistic framework, 
a series of Hartree–Fock–Bogoliubov (HFB) mass models have been 
constructed with the Skyrme [13,14] or Gogny [15] effective in-
teractions. In recent years, the relativistic mean-field (RMF) model 
also receives wide attention due to its success in describing vari-
ous nuclear phenomena [16–22] and its successful applications in 
astrophysics [23–26]. Based on the RMF model, global calculations 
of nuclear mass have been made and the accuracies were gradually 
improved [27–29].

The accuracies of these mass models range from about 3 MeV 
for the BW model [30] to about 0.3 MeV for the WS model [12]. 
However, these accuracies are still insufficient to the studies of ex-
otic nuclear structures and astrophysics nucleosynthesis. Especially, 
these models predict very different nuclear masses with the dif-
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ferences even up to tens of MeV when they are extrapolated to 
the neutron drip line. Therefore, it is still a high demand to fur-
ther improve the existing nuclear mass models. Some techniques 
have been developed along this direction, such as the radial ba-
sis function (RBF) approach [31–34] and the image reconstruction 
technique with the CLEAN algorithm [35]. Moreover, the neural 
network has been proved to be a very powerful tool and it has 
been widely used in an impressive range of problem domains, such 
as pattern recognition and machine learning, see, e.g., books [36,
37] and the references therein. The application of neural network 
to predict nuclear masses can be traced back to the 1990s [38]. 
A series of works after that were developed to further improve 
its predictive performance [39–41]. It was also extended to study 
other nuclear properties, such as nuclear β-decay half-lives [42]. 
These approaches usually need many parameters, in general hun-
dreds or even thousands of parameters, for achieving better pre-
dictions, so the over-fitting problem and the quantification of un-
certainties in the predictions should be treated in a reliable way.

The Bayesian approach can avoid the over-fitting problem by 
introducing the prior distribution of parameters, and it can quan-
tify the uncertainties in the predictions since all parameters have 
probability distributions [43]. Thus, it would be a valuable ap-
proach for improving the mass predictions of nuclear models. 
However, the Bayesian approach involves high-dimensional inte-
grals over the whole parameter space, so its calculations are very 
time-consuming and great progress was achieved only in the last 
decades along with the developments in sampling methods and 
dramatic improvements in the speed and memory of comput-
ers [37]. Recently, the Bayesian neural network (BNN) approach 
was applied to improve the theoretical predictions of nuclear 
masses [44] and nuclear charge radii [45]. The noise error in the 
likelihood function is a key quantity in the BNN approach, how-
ever, it was usually much simplified by taking a fixed value in the 
previous studies [44,45]. In this work, we will introduce a prior 
distribution for the noise error. Furthermore, only the proton and 
mass numbers were considered in the input layer of the neural 
network in the previous studies [44,45]. Here we will consider 
more physical features into the input layer, i.e., we will include 
two quantities related to the well known nuclear pairing and shell 
effects, and investigate their influences on the predictive perfor-
mance of the BNN approach.

In the Bayesian approach, the model parameters ω are de-
scribed probabilistically. A probability distribution p(ω) is intro-
duced over all possible values of ω based on our background 
knowledge, which is called the prior distribution. When we ob-
serve a set of data D = {(x1, t1), (x2, t2), ..., (xN , tN)}, this distribu-
tion will be updated by using the Bayes’ theorem

p(ω|D) = p(D|ω)p(ω)

p(D)
∝ p(D|ω)p(ω), (1)

where xn and tn (n = 1, 2, ..., N) are input and output data, N is 
the number of data; p(D|ω) is the likelihood function, which con-
tains the information about parameters ω derived from the ob-
servations; p(ω|D) is the probability distribution of parameters 
ω after the data D are considered, which is called the posterior
distribution; p(D) is a normalization constant, which ensures the 
posterior distribution is a valid probability density and integrates 
to one.

For the likelihood function p(D|ω), a Gaussian distribution, 
p(D|ω) = exp(−χ2/2), is usually employed, where the objective 
function χ2 reads

χ2 =
N∑

n=1

(
tn − S(x;ω)

�tn

)2

. (2)

Here, the standard deviation parameter �tn is the associated noise 
error related to the nth observable. For the BNN approach, the 
function S(x; ω) is described with a neural network, which is

S(x;ω) = a +
H∑

j=1

b j tanh

(
c j +

I∑
i=1

d ji xi

)
, (3)

where x = {xi} and ω = {a, b j, c j, d ji}, and H and I are the num-
bers of neurons in the hidden layer and the number of input 
variables, respectively. In total, the number of parameters in this 
neural network is 1 + (2 + I) ∗ H .

For the prior distributions p(ω) of model parameters, they are 
usually set as Gaussian distributions with zero means. However, 
the precisions (inverse of variances) of these Gaussian distributions 
are not set as fixed values by hand. We set them as gamma dis-
tributions so that the precisions can vary over a large range and 
hence the BNN approach can search the optimal values of preci-
sions in the sampling process automatically.

After specifying the likelihood function p(D|ω) and the prior 
distribution p(ω), the posterior distribution p(ω|D) of model pa-
rameters is known in principle. One can then make predictions 
based on this posterior distribution,

〈S〉 =
∫

S(x;ω)p(ω|D)dω. (4)

Since the model parameters are described with a probability dis-
tribution, an estimate of uncertainty in theoretical predictions is 
obtained naturally as

�S =
√

〈S2〉 − 〈S〉2. (5)

Note that Eq. (4) involves a high-dimensional integral in the whole 
parameter space. For that, we will employ the Monte Carlo integral 
algorithm, where the posterior distribution p(ω|D) is sampled us-
ing the flexible Bayesian model developed by Neal [43], in which 
the Markov chain Monte Carlo algorithm is employed.

In this work, we will employ the BNN approach to reconstruct 
mass residuals between experimental data Mexp and mass predic-
tions Mth of various models, i.e.,

tn = Mexp(x) − Mth(x). (6)

As in Refs. [44,45], the inputs are usually taken as x = (Z , A). How-
ever, we will consider more physical information into the BNN 
approach, so two extra inputs δ and P related to nuclear pairing 
and shell effects are also included, which are

δ = [(−1)Z + (−1)N ]/2, P = νpνn/(νp + νn). (7)

Here, νp and νn are the differences between the actual nucleon 
numbers Z and N and the nearest magic numbers (8, 20, 28, 
50, 82, 126 for protons and 8, 20, 28, 50, 82, 126, 184 for neu-
trons) [30]. For simplicity, we will use BNN-I2 and BNN-I4 to 
denote the BNN approaches with x = (Z , A) and x = (Z , A, δ, P ), 
respectively. Their numbers of neurons are taken as H = 42 and 
H = 28, respectively, so the model parameters in both neural net-
works are the same as 169.

The experimental masses are taken from the atomic mass eval-
uation of 2016 (AME2016) [8], while only those nuclei with Z , N �
8 and experimental errors σ exp � 100 keV are considered. There 
are 2272 data left that compose the entire data set. In order to 
examine the validity of the BNN approach, we separate the en-
tire set into two different sets: the learning set and the validation 
set. The learning set is built by randomly selecting 1800 nuclei 
from the entire set and the remaining 472 nuclei compose the 
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