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Development of quantum gravity theories rarely takes inputs from experimental physics. In this letter, 
we take a small step towards correcting this by establishing a paradigm for incorporating putative 
quantum corrections, arising from canonical quantum gravity (QG) theories, in deriving falsifiable
modified dispersion relations (MDRs) for particles on a deformed Minkowski space–time. This allows 
us to differentiate and, hopefully, pick between several quantization choices via testable, state-of-the-art
phenomenological predictions. Although a few explicit examples from loop quantum gravity (LQG) (such 
as the regularization scheme used or the representation of the gauge group) are shown here to establish 
the claim, our framework is more general and is capable of addressing other quantization ambiguities 
within LQG and also those arising from other similar QG approaches.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and motivation

It is well-known that the lack of experimental evidence rep-
resents one of the main obstacles in our search for a theory of 
QG [1–4]. In the absence of observations, researchers often rely on 
less dependable principles, such as ‘beauty’ and ‘naturalness’, as 
guidance for advancing QG proposals [5]. Working within a given 
approach, one is then usually forced to choose between quantiza-
tion ambiguities, often on the same footing theoretically, by follow-
ing one’s personal penchants or other questionable criteria. In this 
letter, we relate different quantization schemes, which have been 
proposed in the LQG literature [6–9], to different predictions for 
observable quantities. And by doing so, we lay down a framework 
to distinguish between them using observations.

LQG is a non-perturbative, background-independent approach 
to quantize gravity [10,11], with significant accomplishments such 
as ‘singularity resolution’ in various cosmological and black-hole 
scenarios [12,13]. However, as in other QG models, conclusions 
typically depend on various quantization choices. So far very lit-
tle work has been directed towards understanding whether these 
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formal alternatives affect physical outcomes. Among other reasons, 
this is largely a consequence of the fact that the complexity of the 
full-fledged theory has created a gap between technical results and 
potential observations.

Remarkably, recent results in symmetry-reduced LQG models 
which, in particular, has focussed on the study of quantum sym-
metries in the presence of LQG-inspired corrections [14–18], have 
unanimously discovered the fact that general covariance should be 
modified by such quantum effects. These modifications amount to a 
deformation of the brackets closed by the gravitational constraints 
which generate space and time gauge transformations. Here, we 
outline a path to derive MDRs corresponding to the modified 
brackets and show that quantization ambiguities leave their im-
prints on the form of the MDR. This would suggest that different 
quantization schemes adopted (and often treated interchangeably) 
are not equivalent and, conceivably, might be distinguished thanks 
to forthcoming tests of Planck-scale departures from special rela-
tivistic symmetries [4,19–22].

Although we focus on particular quantization choices charac-
teristic to LQG (such as the choice of the Immirzi parameter, the 
regularization scheme used or the dimension of the gauge group), 
we shall unequivocally demonstrate that our analysis is general 
enough to include other such ambiguities in LQG as well as for 
corrections coming from other canonical QG approaches.
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Throughout the paper we work with natural units if not speci-
fied differently.

2. Deformed covariance and modified dispersion relations

One of the newest results in LQG is the emergence of non-
classical space–times structures [23–31]. These departures from 
smooth classical space–time manifolds can be meaningfully traced 
back to quantum modifications of the so-called hypersurface de-
formation algebra (HDA), which encodes covariance in the Hamil-
tonian formulation of classical general relativity [32]. In fact, since 
the structure function appearing in the classical HDA is the inverse 
of the spatial metric hab on the hypersurface (see e.g. [33] as well 
as the equation below), then it is believed that any modification 
(usually by a phase-space function, β) to it points towards a defor-
mation of the space–time geometry. The common feature of LQG 
models is that only the bracket between two generators of normal 
deformations (or the Hamiltonian constraint) is affected:

{H Q [N], H Q [M]} = D[βhab(N∂b M − M∂b N)] . (1)

Gauge transformations generated by constraints (H1 and D for 
normal N lapse and tangential Na shifts respectively) represent co-
ordinate freedom in classical canonical gravity. The closure of the 
brackets assures there is no violation of the gauge symmetries, but 
the modification in the above equation implies a deformed notion 
of covariance [17,18,30].

It is known that the Poincaré algebra, which describes symme-
tries of Minkowski space–time, can be derived as a special case 
from the classical HDA in a systematic manner [33,34] (see be-
low for a short review of the procedure). Not surprisingly, LQG-
deformations of the HDA turn into corresponding deformations of 
the Poincaré algebra [35–37]. As a consequence, as first shown 
in [38], the familiar dispersion relation (for massless particles), 
E2 = p2, does not hold true anymore and is replaced by more com-
plicated expressions.

Usually, due to the complexity of QG theories, MDRs are either 
parametrized as a generic series expansion in (inverse) powers of 
mPl with some unknown coefficients, i.e. E2 � p2 + a1 p3/mPl +
a2 p4/m2

Pl (where a1, a2, . . . , an are to be determined experimen-
tally) as a purely phenomenological ansatz, or derived in simplified 
models (see e.g. [4,39–42]). Taking the opposite direction here, we 
compute MDRs from a fundamental QG theory – LQG – and, thus, 
contribute to bridge the gap between top-down and bottom-up 
approaches. From this perspective, our work is also part of an on-
going effort [37,43] aimed at characterizing the Minkowski limit of 
LQG, and exploring if there is any relation to non-commutative ge-
ometries [44–47] as a way to characterize the so-called spacetime 
fuzziness or foaminess [48–51].

2.1. Deriving MDRs from deformed-HDA

In this section, we take the Minkowski limit of the LQG-
deformed HDA and eventually prove that it affects the dispersion 
relation through a corresponding deformation of the Poincaré al-
gebra. The full deformed-HDA is given by

{D[Ma], D[Na]} = D[L �M Na],
{D[Na], H Q [M]} = H Q [L �N M],

{H Q [M], H Q [N]} = D[βhab(M∂b N − N∂b M)] .
(2)

1 The superscript ‘Q’ implies that we are dealing with the LQG quantum-corrected 
Hamiltonian constraint here.

In order to reduce to the flat limit, one has to restrict to linear 
lapse and shift functions, which correspond to linear coordinate 
changes, i.e.

Nk(x) = �xk + Rk
i xi N(x) = �t + vix

i (3)

and, at the same time, to flat spatial hypersurfaces i.e. hij ≡ δi j . 
With these restrictions one can prove that the infinite set of gen-
eral diffeomorphisms reduce to the finite subset of Poincaré trans-
formations. It is then possible to read off the commutators be-
tween the Poincaré generators directly from the HDA.In particular, 
from {D[Ma], D[Na]} one can derive { J i, J j}, { J i, P j}, and {Pi, P j}
( J i being the generator of rotations and Pi that of spatial transla-
tions), while { J i, N j}, {P0, J j}, {Ni, P j} and {Pi, P0} (Ni being the 
generator of boosts and P0 that of time translations) can be ob-
tained from {D[Na], H Q [M]}, and finally from {H Q [M], H Q [N]}
one gets {Ni, N j} and {Ni, P0}. In the appendix, we explicitly il-
lustrate the case of rotations as an example.

Let us start with the spherically-symmetric reduction of Hamil-
tonian gravity in Ashtekar–Barbero variables (see e.g. [52]) in the 
presence of LQG deformations. In this case the ADM foliation [32]
allows to decompose the space–time manifold as M = R × � =
M1+1 × S2, where M1+1 is a 2-dimensional manifold spanned by 
(t, r) and S2 stands for the 2-sphere. Given that, the line element 
reads

ds2 = −N2dt2 + hrr(dr + Nrdt)2 + hθθ (dθ2 + sin2 θϕ2) , (4)

where the shift vector is purely radial, i.e. Ni = (Nr, 0, 0), due to 
spherical symmetry, and, consequently, we are left only with ra-
dial diffeomorphisms generated by D[Nr ] = ∫

drNrHr (where Hr

is the only non-vanishing component of the momentum density) 
and, time transformations, generated by H[N] = ∫

drNH (where H
is the Hamiltonian density). The components of the spatial metric 
(hrr, hθθ ) can be written in terms of rotationally invariant densi-
tized triads which are given by:

E = Ea
i τ

i ∂

∂xa
= Er(r)τ3 sin θ

∂

∂r
+

+ Eϕ(r)τ1 sin θ
∂

∂θ
+ Eϕ(r)τ2

∂

∂ϕ
, (5)

where τ j = − 1
2 iσ j represent SU(2) generators. The densitized tri-

ads are canonically conjugate to the extrinsic curvature compo-
nents, which, in presence of spherical symmetry, are conveniently 
described as follows

K = K i
aτidxa = Kr(r)τ3dr + Kϕ(r)τ1dθ+

+Kϕ(r)τ2 sin θdϕ .
(6)

For the simplest case including only local holonomy corrections 
[53,54], with γ ∈ R and j = 1/2, the deformation β takes the form

β = cos(2δKϕ) , (7)

where δ is a regularization parameter, related to the square root of 
the minimum eigenvalue of the area operator.

As already discussed in [37], the main difficulty lies in the fact 
that LQG-deformations in the HDA arises in the form of the struc-
ture function getting modified by a function of the phase space 
variables, while deformations at the level of the Poincaré algebra 
usually implies modification of the algebra generators [41,42]. As a 
way out, it is then convenient to find a way to write β in terms of 
symmetry generators (see also [35,36,38]), and for this purpose, it 
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