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The Landau background gauge, also known as the Landau–DeWitt gauge, has found renewed interest 
during the past decade given its usefulness in accessing the confinement-deconfinement transition via 
the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this 
Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize 
the Gribov–Zwanziger effective action in a BRST and background invariant way; this action leads to a 
restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge 
copies. The explicit background invariance of our action is in contrast with earlier attempts to write 
down and use an effective Gribov–Zwanziger action. It allows to address certain subtleties arising in 
these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something 
which is now averted.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A powerful quantization procedure for locally gauge invariant 
Yang–Mills theories is the background field formalism, in which 
formalism the gauge field is split in a non-propagating “classical” 
background and a fluctuating quantum part which is integrated 
over in the path integral procedure. Just as when dealing with an 
ordinary gauge theory, the quantum gauge fields need to be gauge 
fixed in the continuum. A particularly useful class of gauges in this 
context are the background covariant gauges; in these gauges, the 
background field formalism possesses the important property that, 
after gauge fixing of and integration over the quantum fields, the 
eventual (effective) action ought to still be invariant with respect 
to gauge transformations of the background fields. Useful refer-
ences are [1,2].

Background gauges found a renewed interest during the past 
decade thanks to their usefulness in probing a typical (non-local) 
order parameter for the deconfinement transition, the Polyakov 
loop, whose behaviour can be encoded in a simple specific back-
ground, see [3–9]. Also in the pinch technique combined with 
Dyson–Schwinger equations, the background field formalism plays 
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a central role [10–12]. Algebraic aspects of a specific background 
gauge, the Landau–DeWitt one, including an all order renormaliz-
ability proof, were considered in [13–15].

Albeit powerful, the (covariant) background gauges are also not 
free from the famous Gribov ambiguity [16] hampering the quanti-
zation: multiple gauge equivalent copies of a given quantum gauge 
field obey the same gauge condition. To deal with this ambiguity, 
one possibility is to further constrain the space of gauge configu-
rations to be integrated over in the path integral, a procedure pro-
posed by Gribov in [16] and worked out by Zwanziger in e.g. [17,
18] for the standard Landau gauge. The end point is an effective 
action — the Gribov–Zwanziger action — implementing this restric-
tion. More references can be found in [19].

In the presence of backgrounds, seminal work is [20], based 
on which a background version of the Gribov–Zwanziger effec-
tive action was proposed and used to probe non-perturbative finite 
temperature dynamics in [21,22].

In this Letter, we revisit in Section 2 the problem of Gribov 
copies in the Landau–DeWitt gauge and try to derive a Gribov–
Zwanziger action. Although succeeding in the latter, we identify 
a major drawback, shared with the conjectured action in [21,22]: 
even at zero temperature, a non-zero value of a Lorentz symme-
try breaking background is energetically favoured. The problem is 
traced back to the lack of background gauge invariance and, un-
derlyingly, of BRST invariance of the original Gribov–Zwanziger 
approach. Motivated by the observation in [13] that in the back-
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ground field formalism, BRST invariance at the quantum level is 
closely linked to background gauge invariance at the classical level, 
in Section 3 we then go on remedying this problem by con-
structing a BRST and background invariant version of the Gribov–
Zwanziger action, the latter still capable of mitigating the Gribov 
copy problem but no longer exhibiting the undesirable unphysical 
features at zero temperature.

2. Gribov–Zwanziger with a background

Let us initially work in a general SU(N) gauge theory, such that 
the structure constants will be written as f abc . Later we will re-
strict to SU(2) and choose a particular form for the background 
field.

Our objective is to compute the path integral of Yang–Mills the-
ory in perturbation theory around a given background Āa

μ . We 
therefore split the total gluon field aa

μ as Āa
μ + Aa

μ , where Aa
μ

are the quantum fluctuations around the classical background field 
Āa

μ . Instead of the usual Landau gauge ∂μaa
μ = 0 we will choose 

the Landau background gauge or Landau–DeWitt gauge D̄ab
μ Ab

μ = 0, 
where D̄ab

μ = δab∂μ − g f abc Āc
μ is the covariant derivative contain-

ing the background field.
We will now give a first way to adapt the Gribov–Zwanziger 

framework [16–18] to the case with a background, naively fol-
lowing the same steps as led to the original framework without 
background.

In case of the (transverse) Landau gauge, ∂μ Aa
μ = 0, the Gribov–

Zwanziger action arises from the restriction of the domain of inte-
gration in the Euclidean functional integral to the so-called Gribov 
region �, which is defined as the set of all gauge field configura-
tions fulfilling the gauge ∂μ Aa

μ = 0 and for which the (Hermitian) 
Faddeev–Popov operator is strictly positive. Indeed, requiring pos-
itivity of the Faddeev–Popov operator excludes infinitesimal gauge 
copies, as such copies are connected as Aa

μ → Aa
μ +Dab

μ ωb and can 
both be transverse whenever −∂μDab

μ ωb = 0.
Generalizing to the case at hand, this means that we should 

restrict to

� = {Aa
μ | D̄ab

μ Ab
μ = 0 & Mac = −D̄ab

μ (D̄bc
μ − g f bcd Ad

μ) > 0} . (1)

The starting point is the (Euclidean) Faddeev–Popov action in 
the chosen gauge:

SFP =
∫

d4x

(
1

4
F a
μν F a

μν + baD̄ab
μ Ab

μ

+ c̄aD̄ab
μ (D̄bc

μ − g f bcd Ad
μ)cc

)
, (2)

where (c̄a, ca) stand for the Faddeev–Popov ghosts, ba is the La-
grange multiplier implementing the Landau gauge, and F a

μν de-

notes the field strength containing the full gluon field aa
μ = Āa

μ +
Aa

μ:

F a
μν = ∂μaa

ν − ∂νaa
μ + g f abcab

μac
ν . (3)

As is generally known, this formalism restricts the path integral 
to those gluon field configurations obeying the gauge condition. 
However, this construction still includes many configurations for 
which the Faddeev–Popov operator is not strictly positive.

In order to impose the second condition, we will construct the 
no-pole condition [16]. Following [23] we can compute this condi-
tion to all orders instead of expanding in the gluon field. We aim to 
invert the Faddeev–Popov operator Mac = −D̄ab

μ (D̄bc
μ − g f bcd Ad

μ). 
Let us introduce the operator σ ab — which depends on Āa

μ and on 
Aa

μ — as

(M−1)ae =
(

1

−D̄2

)ab
(

δbe − gD̄bc
μ f cdf A f

μ

(
1

−D̄2

)de

+ σ be

)
.

(4)

The condition of having a strictly positive Faddeev–Popov operator 
is equivalent to requiring that the sum of all connected diagrams 
contributing to the ghost propagator be always finite [23], or that

G(k) = 〈G(k, A)〉conn = 〈M−1〉conn < ∞ ,∀k . (5)

Using the expression (4) and taking account of the facts that the 
background covariant derivatives D̄μ do not interact with the tak-
ing of the vacuum expectation value (meaning the derivatives can 
be put in front of the brackets) and that the quantum fields have 
vanishing vacuum expectation value 〈Aa

μ〉 = 0, we find that the 
condition for a strictly positive Faddeev–Popov operator can be 
written as

Gac(k) =
(

1

−D̄2

)ab

〈δbc + σ bc〉conn

=
(

1

−D̄2

)ab (
1

1 − 〈σ 〉1PI

)bc

< ∞ ,∀k . (6)

In our case, the operator −D̄2 will be positive definite (apart from 
the usual trivial zero), such that the condition we are seeking is 
equivalent to the no-pole condition that the eigenvalues of 〈σ 〉1PI

be less than one.
As usual, we will introduce the no-pole condition into the path 

integral by using the Fourier representation of the Heaviside func-
tion:

+i∞+ε∫
−i∞+ε

dβ

2π iβ
eβ−βσ (0) , (7)

where the notation σ(0) stands for the highest eigenvalues of 
the σ operator. In the case without background, this means the 
momentum flowing through σ is simply set to zero. As a result 
of this way of introducing the no-pole condition, an extra part 
−β + βσ (0) will be added to the action. The integration variable 
β will be called the Gribov parameter. The integral over the Gribov 
parameter is normally done using the steepest descent method, 
which leads to a gap equation for β .

Let us now solve (4) for σ . After some trivial reordering, we 
can write that

σ ab = (−D̄2)ac(M−1)cb − δab + gD̄ac
μ f cdf A f

μ

(
1

−D̄2

)db

. (8)

Now replace the Kronecker delta by −D̄2MM−1(−D̄2)−1:

σ ab = (−D̄2)ac(M−1)cd

(
δdb −Mde

(
1

−D̄2

)eb
)

+ gD̄ac
μ f cdf A f

μ

(
1

−D̄2

)db

= −g(−D̄2)ac(M−1)cdD̄de
μ f ef h Ah

μ

(
1

−D̄2

) f b

+ gD̄ac
μ f cdf A f

μ

(
1

−D̄2

)db

= −g

(
(−D̄2)ac(M−1)cd − δad

)
D̄de

μ f ef h Ah
μ

(
1

−D̄2

) f b

,

(9)
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