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This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. 
Here is discussed how this symmetry is properly implemented using the prescription of minimal 
coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it 
gives the correct expressions for the commutator of covariant derivatives.
In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a 
combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity 
and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The 
gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the 
Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined 
and the notion of local charge is analyzed generating the conservation law for the Weyl charge.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The holographic calculation of the η/s ratio in the N = 4 SYM 
plasma and the production of the Quark–Gluon plasma at RICH 
and LHC reveled the relativistic nature of this fluid and the scal-
ing symmetry of the system [1,2]. The trace of Weyl symmetry 
comes either from the experimental bound on bulk viscosity and 
from the similarity of the η/s calculation in AdS/CFT to the experi-
mental data. This phenomenology calls attention to the importance 
of the dynamics of a relativistic fluid with Weyl invariance. The 
formulation of the relativistic fluid dynamics is performed in a 
gradient expansion approach [3–8]. The elastic and friction proper-
ties of the fluid are described as perturbations of the ideal fluid 
flow and the dispersion relation is expressed in a power series 
ω(k) = ω0 + δ1k + δ2k2 + ... Perturbations are considered at the 
level of energy-momentum tensor, starting with ideal fluid

T ab
ideal = εuaub + p�ab, (1)

with ε the energy density, p the pressure, ua a normalized velocity 
field (gabuaub = −1) and �ab = gab + uaub is the transverse pro-
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jector. The signature of the metric is diag(g) = (−, +, ..., +). The 
gradient expansion of energy momentum-tensor is

T ab = (ε + E)uaub + (p + P )�ab + q(aub) + π 〈ab〉, (2)

that includes scalar (E, P ), vector (qa) and tensor π 〈ab〉 perturba-
tions of the ideal fluid. The symmetric, transverse and traceless 
part of a contra-variant rank 2 tensor is T 〈ab〉 = 1

2 �a
c�

b
d(T cd +

T dc) − 1
d−1 �ab�cdT cd . These perturbations arise from the com-

plete set of hydrodynamical degrees of freedom: the fluid en-
tropy ∇a⊥ ln s, the velocity ∇⊥aub and the torsion free connection 
	c

ab = 1
2 gck(∂a gbk +∂b gka −∂k gab) presents in the covariant deriva-

tives and in the curvature tensors. Velocity gradient is separated 
by symmetry, we have expansion 
 = ∇⊥aua , shear σ ab ≡ 2∇〈a

⊥ ub〉

and vorticity �ab ≡ ∇[a
⊥ ub] .

The ideal fluid equations together with the thermodynamical 
equations fixes that ∇a⊥ ln s = −(d − 1)uc∇cua , ua∇a ln s = −
, re-
ducing the effective degrees of freedom. Gradient expansion is 
them completely fixed by shear, vorticity, expansion, entropy gra-
dient ∇a⊥ ln s, Riemann tensor and their derivatives. The number 
of derivatives in each structure is the order of gradient expansion 
where it appears and for each structure in this expansion there 
is one transport coefficient associated. Weyl symmetry constrains 
the dynamics of the fluid, reducing the number of transport coef-
ficients in all orders. When this symmetry takes place expansion 
and entropy gradient are no longer allowed by symmetry in the 
gradient expansion, instead they combine forming the gauge con-
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nection. It is shown that minimal coupling correctly realizes Weyl 
invariance even when it comes to curvature structures. The gauge 
structure of Weyl symmetry is explored in the context of relativis-
tic hydrodynamics, revealing that a constraint to its dynamics due 
to a conservation law associated with the Weyl gauge charge.

This article is organized as follows: section 2 is dedicated to 
analyze Weyl symmetry in a general scenario and the minimal 
coupling prescription is established, in section 3 is discussed the 
consequences of this symmetry in a hydrodynamical system, sec-
tion 4 deals with the notion of local charge conservation for the 
Weyl gauge field and in section 5 are made some final comments.

2. Minimal coupling prescription

To require Weyl symmetry we impose that the system is invari-
ant under the local scaling transformation

gab → e−2φ(x)gab, gab → e2φ(x)gab. (3)

We say that gab has scaling weight 2 while gab has scaling weight 
−2. The local scaling of the metric requires a scaling of the ve-
locity field ua → e−φ(x)ua . Weyl symmetry is a local scaling in-
variance which in some cases is equivalent to conformal symmetry 
[9,10]. For an hydrodynamic system to be invariant under such a 
transformation its energy-momentum tensor should transform as 
a tensorial density with scaling weight ωT = d + 2:

T ab → e−(d+2)φ T ab. (4)

Consequently, in the gradient expansion only Weyl covariant per-
turbations are allowed.

A non-trivial role of the Weyl scaling is that it changes the 
Christoffel connection in a inhomogeneous way:

	c
ab → 	c

ab + δc
a∇bφ + δc

b∇aφ − gab∇cφ.

As a consequence the velocity gradients and the curvature tensor 
also transforms inhomogeneously under Weyl transformations. To 
repair the inhomogeneous terms of the hydrodynamical degrees of 
freedom it was introduced in [11] a Weyl covariant derivative that 
acts in the fields preserving their character of tensor density. Take 
a vector field ζ b with scaling weight ωζ , ζ b → e−ωζ φζ b , its Weyl 
covariant derivative is

Daζ
b = ∇aζ

b + ωζAaζ
b + (gacAb − δb

aAc − δb
cAa)ζ

c, (5)

where A is the Weyl connection and transform as Aa → Aa +
∂aφ under Weyl transformations. The mathematical properties of 
this connection are discussed in [12]. This structure of the Weyl 
covariant derivative can be organized in a subtle way. It is useful 
to look at Weyl covariant derivative using the explicit form of the 
Christoffel connection:

Daζ
b = ∂aζ

b + ωζAaζ
b + 1

2
gbk(∂c gak + ∂a gkc − ∂k gca)ζ

c

+ (gacAb − δb
aAc − δb

cAa)ζ
c . (6)

We can write the first two terms in the nice composition (∂a +
ωζ Aa)ζ

b . Moreover, we can proceed in the same way and identify 
the terms of the Christoffel connection with the terms of the Weyl 
gauge connection in the simple form

Daζ
b = (∂a + ωζAa)ζ

b + 1

2
gbk[(∂c + ωgAc)gak

+ (∂a + ωgAa)gkc − (∂k + ωgAk)gca)]ζ c . (7)

For tensors with rank bigger the one we have one combination of 
the connections for each Christoffel connection such that we can 
always combine one metric derivative with one Weyl connection 
as expressed above for the contra-variant vector. It means that in 
order to implement Weyl covariance we can just replace the partial 
derivative ∂a by the Weyl invariant one:

∂aO → (∂a + ωOAa)O. (8)

In this approach the invariance under local scaling is replaced by 
the manifestation of a one-form gauge field A = Aadxa . This gauge 
field does not represent physical degrees of freedom since it is a 
connection, the corresponding observables are the components of 
the gauge invariant tensor

Fab = ∇aAb − ∇bAa = ∂aAb − ∂bAa. (9)

2.1. Curvature

To show how this replacement works the commutation of the 
Weyl-covariant derivatives is calculated using this approach and 
will be shown that it provides correctly the well known result

[Da,Db]ζ c = ωζFabζ
c +R c

ab dζ
d, (10)

where R c
ab d is the conformal Riemann tensor defined by

R c
ab d = R c

ab d + ∇a[δ c
b Ad + δ c

d Ab − gbdAc]
− ∇b[δ c

a Ad + δ c
d Aa − gadAc]

− [δ f
a Ad + δ

f
dAa − gadA f ][δ c

b A f + δc
f Ab − gbf Ac]

+ [δ f
b Ad + δ

f
dAb − gbdA f ][δ c

a A f + δc
f Aa − gaf Ac].

(11)

First note that the above equation can be obtained using the above 
prescription of minimal coupling. It is straightforward to show that 
the conformal Riemann tensor R c

ab d is obtained by taking the 
usual Riemann tensor expressed in terms of the derivatives of the 
metric field ∂ g and performing the replacement of ∂ g by (∂ +
ωgA)g .

It is useful to look at the usual Christoffel connection as a 
vector operator 	a . This operator can act in arbitrary tensor, its 
action is defined as follows: for a contra-variant vector 	aζ

b =
	b

af ζ
f , for a covariant vector 	aαb = −	

f
abα f , for a rank 2 ten-

sor 	aGb
c = 	b

akGk
c − 	k

ac Gb
k and so on. With this definition the 

geometrical covariant derivative takes the nice form ∇a = ∂a + 	a . 
The usual Riemann tensor is defined by the action of the com-
mutator of the diffeomorphic covariant derivative on a vector field 
[∇a, ∇b]ϕc = R c

ab dϕ
d and can be expressed as follows

[∇a,∇b]ζ c = [∂a + 	a, ∂b + 	b]ζ c

= ([∂a,	b] + [	a, ∂b] + [	a,	b]) ζ c = R c
ab dζ

d.

Apply the minimal coupling prescription means that the replace-
ment ∂aζ → (∂ + ωζA)ζ and 	[∂ g] → 	̄ = 	[(∂ + ωgA)g] is per-
formed and one find that

[Da,Db]ζ c = ωζ ([∂a,Ab] + [∂b,Aa])ζ c + ([∂a, 	̄b] + [	̄a, ∂b]
+ [	̄a, 	̄b]

)
ζ c. (12)

In first bracket appear the curvature for the gauge connection 
Fab = [∂a, Ab] + [∂b, Aa]. The second term on the hight hand 
side is the Riemann tensor calculated using the new Christoffel 
symbol 	̄, where the metric is minimally coupled to the Weyl 
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