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We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability
analysis of black hole for the unitary and renormalizable non-local gravity with y, = —2yp cannot
be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-
renormalizable case with y, =0, the black hole is stable against the metric perturbations. For non-unitary
and renormalizable local gravity with y, = —2yp = const (fourth-order gravity), the small black holes are

unstable against the metric perturbations. This implies that what makes the problem difficult in stability
analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the

Minkowski spacetime.
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1. Introduction

It turns out that the infinite derivative gravity (non-local grav-
ity) is ghost-free and renormalizable around the Minkowski space-
time background when one chooses the exponential form of an
entire function [1,2]. We note that renormalizability can be easily
checked by showing the finiteness of the Newtonian potential at
the origin from the propagator [3-6].

On the other hand, all Ricci-flat spacetimes including Schwarzs-
child black hole are exact solutions for non-local gravitational the-
ories [7]. In order to check that the Schwarzschild black hole ex-
ists really in the unitary (ghost-free) and renormalizable non-local
gravity, one has to perform the stability analysis of the black hole.
If the black hole solution passes the stability test, one may save
that black hole. Recently, it has shown that the Schwarzschild black
hole is stable against linear perturbations for a subclass of uni-
tary non-local gravity with y, =0 [8]. However, this case is not a
renormalizable gravity around Minkowski spacetime. Although the
non-locality (operators with infinitely many derivatives) is needed
to have a ghost-free and renormalizable gravity, the presence of
higher derivative gravity may make the black hole unsustainable.
This implies that non-locality may not be a good tool to cure the
black hole solutions.

In this work, we wish to discuss stability issues of Schwarzs-
child black hole in non-local gravity. We derive a linearized equa-
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tion (21) which governs the stability of black hole for the unitary
and renormalizable non-local gravity with y, = —2yp. However,
we could not perform the stability analysis of black hole in the
Lichnerowicz operator approach because the appearance of en-
tire function in the linearized equation (34). On the other hand,
for a unitary and non-renormalizable gravity with y, =0, it has
shown that the black hole is stable against the metric perturba-
tions. This is possible because this case reduces to the Einstein
gravity or f(R) gravity [9], which are surely independent of the
entire function [8]. Next, for the non-unitary and renormalizable
local gravity with y, = —2y9 = const (fourth-order gravity) [10],
using the Gregory-Laflamme black string instability [11], the small
black holes are unstable against the Ricci tensor perturbations. This
contrasts to the conventional stability analysis of black hole in
Einstein gravity or f(R) gravity. It implies that the simultaneous
requirement for unitarity and renormalizability makes the stability
analysis difficult.

2. Non-local gravity

A non-local gravity in four dimensions is generally defined
by [8]

2
Sg= K—z/d4x 18| [R + Ryo(DR + Ry y2(R*Y + V], (1)

where k2 = 327G, the d’Alembertian 0 = g’V V,, and the po-
tential term Vg is at least cubic in the curvature and at least
quadratic in the Ricci tensor. Hereafter, we choose Vgy =0 for
simplicity. The non-local gravity with y, = 0 is unitary and non-
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renormalizable around Minkowski spacetime when choosing one
of the two form factors

el _q

VOZ—T, (2)
eH D) (1 - %) 1

VOZ_ 6\:\ 5 (3)

where H(O) is an entire function and M is a mass scale. The first
form factor was first proposed by Biswas, Mazumdar and Siegel
with H(J) = [12], whereas the second one appears in the non-
local extension of Starobinsky gravity [13].

For y» = —2y0, the tree-level unitarity analysis for the metric
perturbation around Minkowski spacetime shows that the gravi-
ton propagator for (2) takes the form of TI(k) = e~k TTcg [4].
Furthermore, its renormalizability can be easily seen by computing
the Newtonian potential from this propagator.

Before we proceed, we would like to note that the unitary case
of y», =0 was reduced to the stability analysis of the Schwarzschild
black hole in Einstein gravity for the case of (2) and f(R) gravity
for the case of (3) [8]. However, this case is not a renormalizable
gravity when quantizing around Minkowski spacetime. Therefore,
in order to make a connection to the unitary and renormalizable
non-local gravity, one considers the case of y, = —2yp in the be-
ginning of stability analysis for the black hole.

3. Equation of motion: Ricci-flat solutions

The equation of motion is derived from the action (1) as [14]
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where [T act on the left and right arguments (on the right of the
incremental ratio) as indicated inside the brackets.

From (4), one could find that the Ricci-flat solution to Ry, =0
is also an exact solution to E,, =0 [7]. It is given by the
Schwarzschild solution with line element

1
ds? = g, pdxtdx’ = — f(r)dt® + mdﬂ +12(d6? + sin® 0dg?),
(5)

where f(r) is the metric function defined by
To
f=1- - (6)

with the horizon radius (size) rg. Furthermore, the Kerr metric, be-
ing another Ricci-flat solution to R, =0, is also an exact solution
to the non-local gravity.

4. Perturbations: linearized equations
Now, let us derive the linearized equation from (4) for the case
of y2 # 0 by considering the perturbation h;, around the back-

ground metric tensor gy,

guv = &uv +hyy, (7)

where overbar () denotes the background spacetime. First of all,
we would like to mention that the black hole solution obtained
from (1) with y» =0 by choosing either (2) or (3) is stable against
linear perturbations [8]. When choosing the case of (2), its lin-
earized equation is reduced to

8Ruw(h) =0 (8)

implying the stability of the Schwarzschild black hole in Einstein
gravity [15-18]. Eq. (8) is indeed a second-order differential equa-
tion, which is solvable for hy,.

On the other hand, for the case of (3), its linearized equations
are composed of the two forms

(D—Mz)aR(h) -0, (9)
1. 1 . .
8Ryuv(h) = &SR — 525V, Vu8R () = 0, (10)

which are surely independent of the exponential form of entire
function e, Here, O is the background d’Alembertian defined
by
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Thus, the linearized equations (9) and (10) are exactly the same
one obtained from the local Starobinsky theory Lf = \/Ig[[R +
R?/(6M?)] in Ref. [9]. Eq. (10) corresponds to a second-order equa-
tion for 8R(h) coupled to 8R ., (h), which is not easy to be solved.
In other words, Eq. (10) is a fourth-order equation for the metric
perturbation hy,,. Therefore, the stability can be proved by intro-
ducing an auxiliary field at the level of the action (by lowering L
to a second order scalar-tensor theory) before performing pertur-
bation process [19].

For case of y, # 0, one may attempt to derive a more simpler
equation of motion because Eq. (4) is too lengthy to analyze the
stability of the black hole. Ignoring quadratic order in the Ricci
tensor (Ric), one finds [7]

5Ra,3(g)

Guv+2=5 0

(£ @R + 2 OR™ ] + 0 Ric?) = 0.
(12)

We note that all the complicated incremental ratios in Eq. (4) are
dropped out of Eq. (12) since these ratios are quadratic in the Ricci
tensor. Considering the linear perturbation of §R,, (h), the replace-
ment of R, =0 cancels them out.

Imposing the unitarity condition of y,(J) = —2yp(0J) around
the Minkowski spacetime, one reduces Eq. (12) to

SRup(8)

5 iy »(0)G* + O Ric?) =0. (13)

Guv +2

Using the relation

SRup(g) 1 1
W = Ega(ugv)ﬁm + Eg/wvavﬁ — 8oV V), (14)

we obtain an equation of motion as
Guv +O(12OGw) + Va Vs (26 ) g

— 2804 V4 Vin (1206 + O Ric?) =0. (15)



Download English Version:

https://daneshyari.com/en/article/8187027

Download Persian Version:

https://daneshyari.com/article/8187027

Daneshyari.com


https://daneshyari.com/en/article/8187027
https://daneshyari.com/article/8187027
https://daneshyari.com

