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We study massless Dirac fermions in the background of a specific planar topologically nontrivial 
configuration in the three-dimensional spacetime. The results show the presence of massive bound states, 
phase shifts and the consequent differential cross section for the scattering of fermions in the weak 
coupling regime. Despite the nontrivial topology of the background field, no fermionic zero mode is 
found.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In general, the interaction of fermion fields with solitonic back-
grounds, topological or nontopological, may create or affect vari-
ous interesting physical phenomena like charge and fermion num-
ber fractionalization, vacuum polarization and Casimir effect, su-
perconductivity, Bose–Einstein condensation, conducting polymers 
and localization of fermions in the braneworld scenarios (see for 
example [1–13]). Besides that, there are interesting works related 
to the investigation of fermions in soliton backgrounds in the con-
text of supersymmetry (see for example [14–17]). The massless 
Dirac fermions emerge as the quasiparticles in various novel mate-
rials such as graphene and topological insulators exhibiting intrigu-
ing behaviors [18,19]. In the context of 2D materials like graphene, 
it is important to study the band structure and properties of the 
trapped Dirac electron states and the consequent electronic prop-
erties of the material in the presence of a defect (see for instance 
[11,20,21]).

In 2 + 1 dimensions there are two particularly interesting 
types of solitons; vortices appearing in Maxwell–Higgs and Chern–
Simons theories where one can attribute electric charge to the 
vortex in the latter case. For specific choices of the Higgs or scalar 
potential, the minimum energy static vortex solutions satisfy a set 
of first-order differential self-duality equations, or known as Bo-
gomol’nyi equations. In [22] the authors introduced a new set of 
topological defects respecting self-duality condition in 2 + 1 di-
mensions where the translational symmetry of the system is bro-
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ken. In the models they considered, there is only one real scalar 
field which in general makes it impossible to have topological de-
fects thanks to Derrick–Hobart no go theorem. The key point in 
their work to circumvent the obstruction was to introduce explicit 
space dependence in the potential term of the boson field. We 
think it would be interesting to study fermions in detail, consid-
ering the effect of symmetries/symmetry breakings, in a specific 
2D nontrivial configuration with this characteristic.

The fermionic zero modes are relevant to the quantum theory 
of the models, while the zero modes of the bosonic fluctuations 
determine the collective coordinates that describe the solitons. 
However, in supersymmetric models, the fermionic zero modes 
can be directly related to the zero modes of bosonic fluctuations 
describing massless modes around the vortices. Fermionic zero 
modes in the Dirac equation for fermions coupled to a topolog-
ically nontrivial defect background are important in systems be-
longing to a large domain in physics, going from high energy to 
condensed matter physics. Specially their relation with the topol-
ogy of the background defect is of considerable interest. In [23], 
Jackiw and Rossi showed that the Dirac field has |n| zero modes 
in the n-vortex background field. This means that the fermionic 
zero modes are protected due to the nontrivial topology of the 
background soliton. In this line of work one can find large num-
ber of papers in the literature (see for example [24] and refer-
ences therein). However, we discuss here a counter example when 
the system does not respect translational symmetry and the La-
grangian has explicit space dependence. Besides that the model 
does not contain a gauge field and the corresponding topologi-
cal flux associated to the vorticity of the system. We show that 
in the model considered in this paper, there is no fermionic zero 
mode, although the background configuration produces a planar 
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topological structure that can be used to simulate a skyrmion-like 
structure with unity skyrmion number, a subject explored before 
in Refs. [25,26].

We studied fermions in the background of several 1D kinklike 
configurations in [27,28] and found the fermionic zero mode as 
well as all other massive bound spectrum. In the current paper, we 
consider a massless Dirac field in a specific rotationally symmetric 
and localized topological structure in 2 + 1 dimensions where the 
system does not respect translational symmetry. We are interested 
in the fermionic bound energy spectrum as well as the scatter-
ing phase shift due to the interaction with the defect. When the 
coupling constant of the fermion–soliton interaction is small com-
pared to the self-interaction of the boson field, resulting in a heavy 
soliton compared to the scales appearing in the system, it is pos-
sible to ignore the effect of the fermion on the soliton which is 
the case in this paper. In this sense we say the defect is the back-
ground perturbation for the Dirac field. Due to the presence of a 
solitonic background as trapping potential, the fermion field spec-
trum can be distorted, i.e., bound states can appear and continuum 
states can change as compared with the free fermion.

The work deals mainly with the fermionic bound energy spec-
trum besides the scattering phase shift in the presence of the back-
ground defect studied before in [22,25,26]. In this model we can 
see that there is no fermionic zero mode, although the background 
configuration is topologically nontrivial. In Sec. 2 we introduce the 
theory and discuss about the symmetries of the system, which we 
use to drive the simplified versions of the equations of motion. In 
Sec. 3 we briefly review a model that can be used to describe a 
skyrmion-like structure with unity skyrmion number. In the model 
to be considered here it is easy to see that there is no need to add 
a gauge field to have a well-defined theory, in contrast with the 
Maxwell–Higgs vortex model. Finally, in Sec. 4 we summarize and 
discuss the main results of the current work.

2. Yukawa coupling

The Lagrangian density adopted in the present work has the 
following form

L = ψ̄ iγ μ∂μψ − gφ ψ̄ψ + 1

2
∂μφ∂μφ − U (r;φ), (2.1)

where ψ and φ are fermion and boson fields, respectively. We 
work in 2 + 1 dimensions and write the Lagrangian density in the 
form

L = Lb +L f , (2.2)

where the bosonic contribution is given by [22]

Lb = 1

2
∂μφ∂μφ − 1

r2
V (φ), (2.3)

and

L f = ψ̄ iγ μ∂μψ − gφ ψ̄ψ. (2.4)

In this paper, we are interested in studying the fermion system 
given by the Lagrangian density L f interacting with the back-
ground planar defect configuration, the solution of the equation 
of motion considering Lb with the scalar potential

V (φ) = a

2
(v2 − φ2)2. (2.5)

The fermion field couples to the bosonic structure via the Yukawa 
coupling parameter g , and the equation of motion, considering the 
Lagrangian L f , has the form

(
iγ μ∂μ − gφ

)
ψ = 0 . (2.6)

As it is clear from the equation of motion (2.6) the system breaks 
parity symmetry which is not unusual in 2 + 1 dimensions, due 
to the fact that the parity symmetry acts differently and parity 
transformation should be taken as reflection in just one of the spa-
tial axes. Besides that, the system does not have energy-reflection 
symmetry. Therefore, we do not expect symmetric energy spec-
trum around the line E = 0. The representation we choose for the 
Dirac matrices is γ 0 = σ3, γ 1 = iσ2 and γ 2 = −iσ1. The charge-
conjugation transformation is representation dependent. The sys-
tem is symmetric under this transformation and in this specific 
representation the charge-conjugation operator is γ 2.

In 2 + 1 dimensions, the mass dimension of the bosonic field φ, 
the spinor field ψ and the coupling constant g are 1/2, 1 and 
1/2, respectively. We rescale all mass scales by the value of the 
field φ at infinity as φ → φ/v , ψ → ψ/v2, r → rv2, g → g/v and 
a → av2. Therefore, from now on all parameters of the system are 
dimensionless.

We then define

ψ ≡ e−iEt
(

ψ1(r, θ)

ψ2(r, θ)

)
(2.7)

in order to get the Dirac equation in the explicit form(
ie−iθ ∂r + e−iθ

r
∂θ

)
ψ2(r, θ) = − [E − gφ(r)]ψ1(r, θ),

(
ieiθ ∂r − eiθ

r
∂θ

)
ψ1(r, θ) = − [E + gφ(r)]ψ2(r, θ). (2.8)

The rotation symmetry allows us to write down an ansatz for the 
solution to the Dirac equation using separation of variables

ψ1(r, θ) = ψ1(r)ei( j−1/2)θ ,

ψ2(r, θ) = ψ2(r)ei( j+1/2)θ , (2.9)

where ψ1(r) and ψ2(r) are complex in general. Substituting the 
above relations in the equations of motion leads to

i

(
∂r + ( j + 1/2)

r

)
ψ2(r) = − [E − gφ(r)]ψ1(r),

i

(
∂r − ( j − 1/2)

r

)
ψ1(r) = − [E + gφ(r)[ψ2(r). (2.10)

This set of equations are not symmetric under j → − j which is 
reflecting the fact that the system does not respect parity. Separat-
ing imaginary and real parts of the components of the spinor field 
as

ψ1(r) = ψ R
1 (r) + iψ I

1(r),

ψ2(r) = ψ R
2 (r) + iψ I

2(r), (2.11)

results in(
∂r + ( j + 1/2)

r

)
ψ I

2(r) = (E − gφ(r))ψ R
1 (r),(

∂r − ( j − 1/2)

r

)
ψ R

1 (r) = − (E + gφ(r))ψ I
2(r), (2.12)

and(
∂r + ( j + 1/2)

r

)
ψ R

2 (r) = − (E − gφ(r))ψ I
1(r),(

∂r − ( j − 1/2)

r

)
ψ I

1(r) = (E + gφ(r))ψ R
2 (r). (2.13)
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