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Deriving accurate energy density functional is one of the central problems in condensed matter physics, 
nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density 
functional by combining the idea of the functional renormalization group and the Kohn–Sham scheme 
in density functional theory. The key idea is to solve the renormalization group flow for the effective 
action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical 
method to quantify the uncertainty associated with the truncation of the correlation part. By taking the 
ϕ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast 
convergence to the exact result even for the highly strong coupling regime.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The density functional theory (DFT) [1,2] is a successful ap-
proach to reduce quantum many-body problem to one-body prob-
lem with the local density distribution ρ(x). Due to its high ac-
curacy with relatively low computational cost, DFT has great suc-
cess in various fields including condensed matter physics, nuclear 
physics, and quantum chemistry. According to the Hohenberg–
Kohn (HK) theorem [1], there exits an energy density functional 
of ρ(x) as EU [ρ] = FHK[ρ] + ∫

d3x U (x)ρ(x), where the univer-
sal functional FHK[ρ] is independent of the external potential 
U (x). The ground-state energy of the system corresponds to a 
global minimum of EU [ρ]. In DFT, deriving FHK[ρ] in a system-
atic and controllable way is the most important issue, see, e.g., the 
overviews [3–6], as well as recent topical reviews in condensed 
matter physics [7,8], nuclear physics [9,10], and quantum chem-
istry [11–13]. Also, the theoretical error estimates or uncertainty 
quantification is a key issue in modern DFT applications [14–17].

Another successful approach to quantum many-body problem 
is the functional renormalization group (FRG) [18]: It is based on 
the one-parameter flow equation which leads to the quantum ef-
fective action at the end of the flow, see, e.g., the review [19]. 
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A close connection between the effective action �[ρ] in FRG and 
the universal functional FHK[ρ] in DFT has been established on the 
basis of the two-particle point-irreducible (2PPI) scheme, which we 
call 2PPI-FRG, by Polonyi, Sailer, and Schwenk [20,21], so that FRG 
provides a practical way to construct FHK[ρ]. The 2PPI-FRG was 
further developed in Refs. [22–24] with the case studies including 
the zero-dimensional (0-D) ϕ4 theory, (0+1)-D anharmonic oscilla-
tor, and (1+1)-D Alexandrou–Negele nuclei. See also Ref. [25] for a 
comparative study. Although the 2PPI-FRG is a systematic formal-
ism, the resultant accuracy in these case studies was found to be 
not so satisfactory: Up to the next-to-leading order, the ground-
state energies of (1+1)-D nuclei missed by about 30% comparing to 
the Monte Carlo results [24]. Even for the simplest 0-D model [23], 
the ground-state energy still missed by about 2% with the sixth-
order calculation for intermediate coupling strength. Note that the 
sixth-order calculations are almost infeasible for actual (3+1)-D 
problems, and even if it is achieved, the 2%-accuracy would not 
be good enough for practical applications of nuclear binding ener-
gies, not to mention the chemical accuracy.

The purpose of this Letter is twofold: First of all, we propose a 
novel optimization method of FRG in analogy with the Kohn–Sham 
(KS) scheme in DFT, which we call KS-FRG. The convergence of the 
energy density functional in KS-FRG is shown to be much faster 
than the un-optimized scheme. Secondly, we propose a method to 
estimate the truncation uncertainty in the KS-FRG. By taking the 
0-D ϕ4 theory as an example, we demonstrate explicitly that these 
methods work well in practice.
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2. Formalism

Let us consider a general non-relativistic system with a two-
body interaction V (x1, x2). The bare action S in the Euclidean 
space reads

S[U , V ] =
∫

ψ†(x) (∂τ + K + U (x) − μ)ψ(x)

+ 1

2

∫∫
ψ†(x1)ψ

†(x2)V (x1,x2)ψ(x2)ψ(x1) , (1)

with x = (τ , x), 
∫ = ∫ β

0 dτ
∫

ddx, d the space dimension, β the in-
verse temperature, μ the chemical potential, and K = −∇2/(2M). 
The external potential U (x) vanishes for self-bound systems such 
as atomic nuclei, while it represents physical harmonic trap for ul-
tracold atoms.

The generating functional of connected Green’s functions is de-
fined by

eW [ J ] =
∫

D(ψ†ψ) exp{−S[U , V ] +
∫

J (x)ψ†(x)ψ(x)} , (2)

where J (x) is a local external source. The functional derivative of 
W [ J ] with respect to J is nothing but the local density

ρ(x) = 〈ψ†(x)ψ(x)〉 = δW [ J ]
δ J (x)

. (3)

The 2PPI effective action is then defined as the Legendre transform,

�[ρ; U , V ] = −W [ J ] +
∫

J (x)ρ(x) , (4)

and the energy density functional at zero temperature is obtained 
by

E[ρ] = lim
β→∞

�[ρ]
β

. (5)

In the 2PPI-FRG formalism [20,21], a flow parameter λ ∈ [0, 1] is 
introduced to replace V by λV and U by a given regulator function 
Uλ with the boundary condition Uλ=1 = U . Then the λ-dependent 
2PPI effective action is defined by �λ[ρ] ≡ �[ρ; Uλ, λV ] whose 
renormalization group flow reads [21],

∂λ�λ[ρ] = ρ · ∂λUλ + 1

2
ρ · V · ρ + 1

2
Tr

{
V ·

(
�

(2)
λ [ρ]

)−1
}

. (6)

Here the dots and trace imply X · Y = ∫
X(x)Y (x), X · A · Y =∫∫

X(x)A(x, y)Y (y), and Tr{A · B} = ∫∫
A(x, y)B(y, x). The n-point 

vertex functions are obtained by

�
(n)
λ;x1,...,xn

[ρ] = δn�λ[ρ]
δρ(x1) . . . δρ(xn)

. (7)

The ground-state density for a fixed λ denoted by ρ̄λ is a solu-
tion of

δ�λ[ρ]
δρ(x)

∣∣∣∣
ρ=ρ̄λ

= 0 , (8)

so that the effective action �λ[ρ] can be expanded around ρ̄λ as

�λ[ρ] = �
(0)
λ [ρ̄λ] + 1

2

∫∫
�

(2)
λ;x1,x2

[ρ̄λ](ρ − ρ̄λ)x1(ρ − ρ̄λ)x2 + · · ·

≡ �̄
(0)
λ +

∞∑
n=2

1

n!
∫

�̄
(n)
λ · (ρ − ρ̄λ)

n , (9)

where �̄(n)
λ ≡ �

(n)
λ [ρ̄λ]. This power series expansion together with 

the flow equation (6) leads to an infinite hierarchy of coupled 

integro-differential equations for �̄(n)
λ and ρ̄λ . As shown in some 

case studies, however, such a “naive” expansion converges rather 
slowly to the exact results [23,24].

Here we propose the KS-FRG which is a novel optimization the-
ory of FRG with faster convergence under the same spirit with the 
KS scheme in DFT [2]. The basic idea is to introduce an effective 
action for a hypothetical non-interacting system with a mean-field 
KS potential UKS,λ(x) and to split the total effective action into the 
mean-field part �KS,λ and the correlation part γλ ,

�λ[ρ] = �KS,λ[ρ] + γλ[ρ] , (10)

with �KS,λ[ρ] ≡ �[ρ; UKS,λ, 0]. These two terms are determined si-
multaneously by solving the FRG flow equation together with the 
KS equation.

Explicit form of the self-consistent equation to obtain �KS,λ[ρ]
through UKS,λ is

δ�KS,λ[ρ]
δρ(x)

∣∣∣∣
ρ=ρ̄λ

= 0 . (11)

This implies that ρ̄λ is a common stationary point for both 
�KS,λ[ρ] and �λ[ρ]. Equation (11) is equivalent with the standard 
KS equation [2,9] written in terms of the single-particle wave func-
tions, since it is nothing more than the one-body problem with 
V = 0. The flow equation for the correlation part is obtained from 
Eqs. (6)–(11) as

∂λγλ[ρ] = ρ ·
(
∂λUλ + �̄

(2)
KS,λ · ∂λρ̄λ

)
+ 1

2
ρ · V · ρ

+ 1

2
Tr

{
V ·

(
�

(2)
KS,λ[ρ] + γ

(2)
λ [ρ]

)−1
}

. (12)

Here we have used the following chain rule,

∂λ�KS,λ = δ�KS,λ

δUKS,λ

· δUKS,λ

δρ̄λ

· ∂λρ̄λ = −ρ · �̄(2)
KS,λ · ∂λρ̄λ . (13)

As seen from the first term in the right-hand side, the effective 
one-body term proportional to ρ is properly separated out. Note 
also that the choice UKS,λ=0 = Uλ=0 leads to the initial condition 
γλ=0[ρ] = 0.

Equations (10), (11), and (12) are the master equations in KS-
FRG. To solve them in practice, we expand the correlation part 
γλ[ρ] around ρ̄λ ,

γλ[ρ] = γ̄
(0)
λ +

∞∑
n=2

1

n!
∫

γ̄
(n)
λ · (ρ − ρ̄λ)

n . (14)

On the other hand, we do not introduce the expansion for the 
mean-field part in Eq. (10). This is in contrast to the case of 2PPI-
FRG where the whole �λ[ρ] is expanded as a power series.

By expanding both sides of Eq. (12) in terms of a dimensionless 
power counting parameter (ρ − ρ̄λ)/ρ̄λ , we obtain a set of coupled 
integro-differential equations in the form of

∂λγ̄
(n)
λ = f (n)

[
γ̄

(0)
λ , . . . , γ̄

(n)
λ , γ̄

(n+1)
λ , γ̄

(n+2)
λ

]
, (15)

where n = 0, 1, 2, 3, · · · , and γ̄ (1)
λ ≡ 0. Note that f (n) depends not 

only on γ̄
(0,...,n+2)
λ but also on �̄

(0,...,n+2)
KS,λ and ∂λρ̄λ originating 

from the expansion.
A closed set of equations for γ̄ (0,...,m)

λ and ρ̄λ is obtained from 
Eq. (15) under the m-th order truncation, γ̄ (n≥m+1)

λ = 0. In princi-
ple, the uncertainty of the m-th order solution can be checked by 
solving the (m + 1)-th order equations. However, it is not always 
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