
Physics Letters B 778 (2018) 419–425

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Holographic QCD phase diagram with critical point 

from Einstein–Maxwell-dilaton dynamics

J. Knaute a,b,∗, R. Yaresko a,b, B. Kämpfer a,b

a Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden, Germany
b TU Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 February 2017
Received in revised form 27 October 2017
Accepted 18 January 2018
Available online 3 February 2018
Editor: J.-P. Blaizot

Keywords:
Gravity dual
Holography
Quark–gluon plasma
Critical point

Supplementing the holographic Einstein–Maxwell-dilaton model of [1,2] by input of lattice QCD data for 
2 + 1 flavors and physical quark masses for the equation of state and quark number susceptibility at 
zero baryo-chemical potential we explore the resulting phase diagram over the temperature-chemical 
potential plane. A first-order phase transition sets in at a temperature of about 112 MeV and a baryo-
chemical potential of 612 MeV. We estimate the accuracy of the critical point position in the order of 
approximately 5–8% by considering parameter variations and different low-temperature asymptotics for 
the second-order quark number susceptibility. The critical pressure as a function of the temperature has 
a positive slope, i.e. the entropy per baryon jumps up when crossing the phase border line from larger 
values of temperature/baryo-chemical potential, thus classifying the phase transition as a gas–liquid one. 
The updated holographic model exhibits in- and outgoing isentropes in the vicinity of the first-order 
phase transition.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The QCD phase diagram exhibits potentially a large variety of 
structures [3–6]. Either originating from extrapolations of weak-
coupling results or being suggested by models (most notably 
Nambu–Jona–Lasinio (cf. [7]), linear sigma/quark-meson [8] mod-
els in numerous variants), various phases of strongly interacting 
matter may occur, such as color superconductors (cf. [9–11]), or 
quarkyonic matter (cf. [12]), or chirally restored phases (cf. [13]), 
or color-flavor locked structures (cf. [14]).

While the gas–liquid (GL) first-order phase transition (FOPT) 
in nuclear matter seems to be well established since some time 
[15–20], the hadron–quark (HQ) deconfinement transition still of-
fers a few challenges. At very small or zero net-baryon density 
corresponding to a small chemical potential (μ)-to-temperature 
(T ) ratio, μ/T � 1, the HQ transition is established as a crossover 
in 2 + 1 flavor lattice QCD with physical quark masses [21,22] at 
a characteristic scale of Tc = O(150 MeV). The popular Columbia 
plot [23] sketches qualitatively the options of the phase structure 
in dependence of the u, d, s quark masses mu,d,s . For instance, in 
the chiral limit, mu,d,s → 0, or the opposite infinitely heavy quark-
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mass limit, mu,d,s → ∞, the deconfinement transition is a FOPT. 
Due to the sign problem of the fermionic determinant the ab initio 
lattice QCD evaluations are not yet conclusive with respect to the 
confinement and chiral restoration transition(s) at non-zero baryo-
chemical potential, in particular for μ/T > 2. Some methods try 
to avoid or circumvent the sign problem (cf. [24]), e.g. by evalu-
ations at imaginary μ (which need a prescription of iμ → μ) or 
a Taylor expansion in powers of μ/T with coefficients calculated 
at μ = 0 (which needs statements on the convergence [25]), or 
the reweighting method (which needs statements on the density 
and parameter ranges to incorporate the sign and overlap prob-
lem [26]). Other approaches are based on the complex Langevin 
method [27,28] (see [29] for recent developments) or a recent pro-
posal for a path optimization method [30], which is based on the 
Lefschetz-thimble path-integral method [31].

The pertinent uncertainties make the region of larger μ/T in-
teresting. A particularly interesting option is the possibility of a 
(critical) end point (CEP) of a curve of FOPTs, e.g. Tc(μ), setting in 
at (TC E P , μC E P ) and running toward the T = 0 axis when imaging 
the phase diagram in the T –μ plane.

The CEP coordinates are yet fairly unconstrained. Plugging 
model results and QCD-related extrapolations together one arrives 
at some less conclusive scatter plot (cf. e.g. [24]). Advanced lattice 
QCD approaches disfavor a CEP position at T /Tc(μ = 0) > 0.9 and 
μ/T ≤ 2 [25].
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Experimentally, there are dedicated programs aiming at pinning 
down the CEP location. For instance, the beam energy scan at RHIC 
[32] gave hints on some features in the beam energy dependence 
of selected observables which have been interpreted as CEP sig-
nature (cf. [33]). In [34] another view has been launched with 
the conclusion of having also seen CEP indications. Furthermore, 
the SHINE (NA61) collaboration at CERN-SPS is also systematically 
seeking CEP effects [35]. Experiments planned at FAIR and NICA 
and J-PARC [36] are analogously driven by CEP searches, analo-
gously as goals by the CBM collaboration [37,38], and the MPD 
group [39].

Given that challenges from both theory and experiment one can 
ask whether further theoretical model classes beyond the above 
mentioned approaches could be useful in exploring the hypotheti-
cal FOPT emerging from a CEP. Holographic models, advancing the 
seminal AdS/CFT correspondence [40–42], are thought to mimic 
essential QCD properties in the strong-coupling regime [43–47]
and thus may serve as suitable candidates for such an enterprise. 
Holographic bottom-up approaches coupled to a self-interacting 
dilaton with nontrivial potential were particularly successful to 
describe nonconformal properties of the quark–gluon plasma and 
QCD [48–51]. In [1,2] a model formulation has been put forward 
which displays a critical point in the T –μ plane. While [1,2] fo-
cuses on CEP properties and an outline of some transport coef-
ficients, [52,53] employed that holographic model to investigate 
thermodynamics and further transport quantities at small μ/T , 
however, the question of the CEP position, based on an adjust-
ment to recent lattice data, and properties of phase diagrams were 
not addressed. The model rests on the coupled Einstein–Maxwell-
dilaton (EMd) dynamics and can be adjusted to QCD thermody-
namics, i.e. the equation of state (EoS) and quark number suscep-
tibility at μ = 0. The resulting phase structure is the topic of our 
present paper. We feel that an update of [1,2] is timely since by 
now consistent and more precise lattice QCD data are at our dis-
posal. In fact, we find some qualitatively important modifications 
in comparison to [1,2] w.r.t. the pattern of isentropes in the phase 
diagrams as well as the position of the CEP.

With respect to the discussion in [54], a FOPT curve is specified 
by further peculiarities: it can be related either to a GL type or 
to a HQ type transition. For a discussion contrasting features of GL 
and HQ phase transitions we refer the interested reader to [54–57], 
where the notions of entropic vs. enthalpic transitions as well 
as congruent and non-congruent material changes are exempli-
fied and representations in other variables than T –μ are exhibited. 
Such different FOPTs can matter significantly in core-collapse su-
pernova explosions as discussed in some detail in [58]. Motivated 
by such a relation to astrophysical aspects of the phase structure 
of strongly interacting matter – not only touching core-collapse 
dynamics but also neutron (quark core) stars – we unravel here 
the phase structure of the holographic EMd model. It turns out 
that the EMd model with adjustments to QCD input belongs to the 
GL class. That is across the phase boundary both the baryon den-
sity n and the entropy density s jump when considering the stable 
phases. For the GL transition, the entropy per baryon s/n drops 
down when going into μ or T direction, while at the HQ tran-
sition s/n jumps up, according to expectations in [54]. According 
to the Clausius–Clapeyron equation one finds the critical pressure 
p(T , μc(T )) either with positive slope (GL transition) or with neg-
ative slope (HQ transition).1

1 Obviously, the resulting behavior of the pressure at the FOPT at smaller temper-
atures is markedly depending on these details, with impact on the stiffness of the 
EoS which in turn governs the possibility of a third family of compact stars or twin 
configurations [59–62], on which the options for core-collapse supernova explosions 
according to [58] (and further references therein) depend on.

Our paper is organized as follows. In section 2 we recall the 
holographic EMd model. The numerical adjustment to lattice QCD 
data at μ = 0 is described in section 3 and the numerical results 
for the phase diagrams are presented in section 4, including an 
analysis of the impact of different assumptions for the susceptibil-
ity at small temperatures. We summarize in section 5.

2. Recalling the holographic EMd model

The holographic model of gravity of a 5-dimensional Riemann 
space sourced by the coupled Maxwell-dilaton fields is defined in 
[1,2] by the action

S = 1

2κ2
5

∫
d5x

√−g

(
R − 1

2
∂μφ∂μφ − V (φ) − f (φ)

4
F 2
μν

)

+ SG H , (1)

where R is the Einstein–Hilbert part, Fμν = ∂μ Aν − ∂ν Aμ with 
Aμdxμ = �dt stands for the Abelian gauge field à la Maxwell, and 
φ is a real scalar (dilaton) with self-interaction described by the 
so called potential V (φ). The Maxwell field and dilaton are cou-
pled by a dynamical strength function f (φ). The Gibbons–Hawking 
term SG H for a consistent formulation of the variational problem 
is not needed explicitly in our context. The “Einstein constant” κ5

is taken as a model parameter. The ansatz for the infinitesimal line 
element squared

ds2 = e2A(r;rH )
( − h(r; rH )dt2 + d�x2) + e2B(r;rH )dr2

h(r; rH )
(2)

highlights that (i) only the dynamics in bulk direction r is con-
sidered and (ii) a horizon is admitted at r = rH by a simple zero 
of the blackness function h. By a gauge choice, one can achieve 
B = 0 and rH = 0. We solve the field equations following from 
(1), (2) with the technique described in [1,2]. In a nutshell: One 
has to numerically integrate from rH + ε towards the boundary at 
r → ∞. Requiring regularity of A, h, φ, � at the horizon r = rH , de-
fined by h(rH ; rH ) = 0, series solutions for any these functions can 
be obtained, which yield the initial conditions for the integration. 
After fixing all gauge redundancies the two remaining indepen-
dent quantities parametrizing the solutions are φ0 ≡ φ(rH , rH ) and 
�1 ≡ ∂�

∂r

∣∣
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. It follows from the horizon expansion of A that �1

is bounded, �1 < �max
1 ≡

√
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. Close to the boundary, the 

following expansions in powers of e−α(r) ≡ exp[− r
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valid: h(r) = h∞
0 + . . ., A(r) = α(r) + . . ., �(r) = �∞

0 +�∞
2 e−2α(r) +

. . ., and φ(r) = φAe−(4−	)α(r) + φB e−	α(r) + . . .. The expansion of 
φ assumes L2 V (φ) = −12 + 1

2 [	(	 − 4)]φ2 + . . . for φ → 0.2 By 
the standard AdS/CFT dictionary, φA is the source and φB the ex-
pectation value of the boundary theory operator dual to φ. Then 
one obtains the thermodynamic quantities temperature T , entropy 
density s, baryo-chemical potential μ and baryon density n as

T = λT
1

4πφ
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A

√
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, (3)

s = λs
2π

φ
3/(4−	)

A

, (4)

2 This means we are considering a relevant operator in the boundary theory with 
scaling dimension 	 < 4; see [63] for a different choice of potential asymptotics 
that correspond to a marginal operator.
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