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We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky’s scalar 
ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians 
are reformulated in the language of differential forms. The absence of higher order equations of motion 
for the scalar modes stems from the basic fact that every exact form is closed. The well-established 
Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. 
We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear 
derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky’s scalar ghosts are absent in these 
fully nonlinear theories.
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1. Introduction

The problem of ghost-like degrees of freedom are encountered 
in the construction of theories with large numbers of spacetime 
indices, either from high spin fields or high order derivatives. High 
spin fields are dangerous because some tensor indices become 
derivative indices for the longitudinal modes, while high deriva-
tive Lagrangians are dangerous due to Ostrogradsky’s instability.

A host of ghost-free theories were carefully constructed, re-
sulting in the emergence of a common pattern. The linear theory 
of ghost-free massive gravity requires the Fierz–Pauli tuning [1], 
where the indices of mass terms are contracted antisymmetrically. 
When Lovelock studied the most general metric theories with sec-
ond order equations of motion [2], the ghost-free combinations 
turned out to be antisymmetric products of Riemann curvature 
tensors. The antisymmetric structure appeared, again and again, 
in the high derivative scalar theories free of Ostrogradsky’s ghost 
[3], nonlinear potential terms for massive spin-two fields [4], etc. 
[5–7].

This general pattern also applies to conventional theories. 
Both the Maxwell action for massless spin-1 fields and the lin-
earized Einstein–Hilbert action for massless spin-2 fields are two-
derivative quadratic actions with indices contracted antisymmet-
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rically. Antisymmetrization seems to be a universal element in 
ghost-free Lorentz-invariant Lagrangians.

It is tempting to develop a unifying framework for local, ghost-
free, Lorentz-invariant, Lagrangian field theories, with antisym-
metrization being a key ingredient. It is clearly not an easy task 
to keep track of all the degrees of freedom in full generality and to 
make sure they are all free of ghost-like instability. As a first step, 
we will focus on the scalar modes. The absence of scalar ghosts is 
a necessity for completely ghost-free models. Therefore, ghost-free 
theories belong to a subset of scalar-ghost-free models and can be 
covered in this work.

In this work, we propose that the Lagrangians should be some 
differential forms. This may seem like a trivial statement as the 
volume element is itself a differential form and a Lagrangian, as 
the integrand of an action integral over spacetime, is defined as 
the product of a scalar function and the volume form.

The refinement in our proposal is that the Lagrangians should 
be the wedge products of geometric forms and matter forms

L =
∑

f ω1 ∧ · · · ∧ ωn, (1)

where the precise meanings of these differential forms ωk are dis-
cussed later. In the simplest case, ωk = E are the same vielbein 
one-form. Their wedge product gives the volume form, which ap-
pears in general relativity as the cosmological constant term. In 
general situations, ωk could be the curvature two-forms and some 
exact forms constructed from matter fields. The use of these elabo-
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rate building blocks can help us to understand why higher deriva-
tive terms are forbidden from appearing in equations of motion: 
the absence of ghost-like degrees of freedom becomes a conse-
quence of a basic property of exterior derivative

d 2 = 0, (2)

whose geometric interpretation by Stokes’s theorem is the bound-
ary of a boundary vanishes.

2. Ostrogradsky’s ghosts

In this section, let us explain the ghost problem in our dis-
cussions. Ostrogradsky’s theorem states that the energy of a La-
grangian theory with higher order time derivative terms is not 
bounded from below because the Hamiltonian will be linear in a 
conjugate momentum [8]. The additional negative energy modes 
are ghost-like degrees of freedom and their presence is due to 
the fact that equations of motion are of higher than second order. 
A loophole in Ostrogradsky’s proof is the assumption that the La-
grangian is non-degenerate. In other words, if the Euler–Lagrange 
equations remain second order, a higher derivative Lagrangian the-
ory could be healthy and no additional problematic degree of free-
dom is propagating.

The absence of higher order time derivative terms in the equa-
tions of motion is not a sufficient condition for healthy models. For 
example, a Hamiltonian could be unbounded due to a wrong-sign 
kinetic term or potential term.

A more subtle point is that, in high spin field theories, the 
Hamiltonians can be unbounded from below, even if Ostrograd-
sky’s ghosts are absent and the Lagrangian does not contain any 
wrong sign. An important example is the linearized Einstein–
Hilbert term, whose Hamiltonian is unbounded due to the opposite 
signs of two momentum squared terms.1,2

Having these subtleties in mind, we would like to confine our 
attention to the absence of Ostrogradsky’s ghosts in the sense that 
no additional degree of freedom is propagating and the equations 
of motion are at most of second order. Whether the Hamiltonians 
are bounded from below in the end is beyond this work. To further 
simplify our discussion, we will mainly concentrate on the scalar 
modes and require the absence of Ostrogradsky’s scalar ghosts.

3. Lagrangians free of Ostrogradsky’s scalar ghosts

Now we want to discuss general Lagrangians that could be free 
of Ostrogradsky’s scalar ghosts. We will explain how the general-
ized Kronecker delta arises as a result of second order equations 
of motion together with Lorentz invariance. Then we will derive 
the general form of ghost-free Lorentz-invariant Lagrangians in the 
language of tensors.

By Lorentz-invariance, we mean that Minkowski vacuum is 
a solution of the models and, after we expand the Lagrangians 
around this background solution, the field contents transform 
properly under Lorentz transformations. The action should be in-
variant under these global symmetry transformations. So the theo-
ries do not distinguish among time and different space indices up 

1 The linear theories of massless higher spin fields may share the same issue. An 
explicit example can be found in [10], where the Fronsdal action [11] for a spin-3 
field is rewritten in Hamiltonian form.

2 In the Hamiltonian form of the Einstein–Hilbert action, the momentum squared 
terms are included in the Hamiltonian constraint and the Hamiltonian simply van-
ishes on the constraint surface.

some signs.3 This definition of Lorentz-invariance applies to gravi-
tational theories when the Minkowski metric is a solution.

A Lagrangian constructed from zeroth and first order terms will 
not lead to apparent higher order equations of motion. Let us con-
sider a Lagrangian with harmless zeroth order terms and danger-
ous second order derivative terms

L ∼ φ . . . φ ∂∂φ . . . ∂∂φ, (3)

where φ indicates dynamical fields and they can have tensor in-
dices. Without φ . . . φ, the equations of motion will be of higher 
than second order or simply vanish. Higher than second order 
derivative terms are not considered because they usually lead to 
terms of at least the same order in the equations of motion after 
varying the φ . . . φ part with respect to φ. We postpone the inclu-
sion of first order derivative terms to later discussions.

Now we examine the variations of the product of two second 
order terms

δ(∂a1∂a2φ ∂b1∂b2φ . . . ) → (
∂a1∂b1∂b2φ ∂a2 · · · + . . .

)
, (4)

where we concentrate on a third order term on the right hand 
side. There are fourth order derivative terms as well, but the spirit 
manifests itself already in the third order terms. Since derivatives 
commute with each others, third order derivative terms with the 
same indices but different orders are equivalent. The coefficient of 
a third order derivative term is

Cμ,νρ∂μ∂ν∂ρφ

=
(

Ca,bc + Ca,cb + Cb,ac + Cb,ca + Cc,ab + Cc,ba
)
∂a∂b∂cφ. (5)

To have a vanishing coefficient,4 there are two simple choices: ei-
ther (μ, ν) or (μ, ρ) are antisymmetrized. A more detailed deriva-
tion is given in section II of [9]. For the second cubic deriva-
tive term, we impose the same requirement, then we have two 
ansatzes to obtain second order equations of motion:

• (a1, b1) and (a2, b2) are two sets of antisymmetrized indices;
• (a1, b2) and (a2, b1) are two sets of antisymmetrized indices.

The same requirements for other second order derivative terms 
lead to two chains of antisymmetrized indices for the derivative 
indices of the second order terms. These tensor structures corre-
spond to Young diagrams with two columns.

Let us now consider first order derivative term ∂φ. At first sight, 
varying the first order term will lead to a third order term

δ(∂φ) ∂∂φ → −∂∂∂φ, (6)

but, in the case of single scalar field, this term is canceled by vary-
ing the corresponding second order term

∂φ δ(∂∂φ) → ∂∂∂φ, (7)

3 Some of our results can be generalized to other maximally symmetric vacua, 
i.e. de-Sitter space and Anti de-Sitter space. For example, the cosmological con-
stant term mentioned in the introduction can lead to dS or AdS background 
solutions. Background-independent ghost-free theories should reduce to Lorentz-
invariant ghost-free theories if the limit is not singular, so they could be obtained 
by proper generalizations of a subset of Lorentz-invariant ghost-free theories.

4 We assume all higher order derivative terms should be absent, which seems to 
be stronger than the absence of higher order time-derivative terms. For example, 
∂i∂0∂0φ is of second order in time derivatives, but it comes from a third order term 
∂μ∂ν∂ρφ. If ∂3

0 φ is eliminated by some special tensor structure, then the third order 
term ∂μ∂ν∂ρφ is allowed.
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