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We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously 
broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal 
model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the 
mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum 
energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present 
in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two 
(almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the 
cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry 
breaking phase transition at low temperatures, T � 132 MeV. Furthermore, unlike the standard case, the 
universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives 
rise to a stochastic gravitational background with a peak frequency ∼ 10−8 Hz as well as triggers the 
production of approximately solar mass primordial black holes. The observation of these signatures of 
cosmological phase transitions together with the detection of a light dilaton would provide a strong hint 
of the fundamental role of scale invariance in particle physics.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Scale invariance provides an attractive framework for address-
ing the problem of the origin of mass and hierarchies of mass 
scales. In this framework, quantum fluctuations result in an overall 
mass scale via the mechanism of dimensional transmutation [1], 
while dimensionless couplings are responsible for generating mass 
hierarchies. The dimensionless couplings in the low-energy sector 
of the theory are only logarithmically sensitive to the high-energy 
sector and can be naturally small in the technical sense [2–4]. If 
high-energy and low-energy sectors interact via feeble interactions, 
the breaking of scale invariance in the higher energy sector would 
proliferate in the low-energy sector resulting in a stable mass hier-
archy between the two [for an incomplete list of recent works, see 
[5,6]]. The above scenario is signified by the fact that scale (con-
formal) invariance is indeed an essential symmetry in string theory 
that is believed to provide a consistent ultraviolet completion of all 
fundamental interactions including gravity.

Recently, two of us have proposed a minimal extension of the 
Standard Model which incorporates spontaneously broken scale in-
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variance as a low energy effective theory [7]. In this approach, 
non-linearly realised scale invariance is introduced by promoting 
physical mass parameters (including the ultraviolet cut-off �) to a 
dynamical dilaton field. The dilaton field develops a large vacuum 
expectation value (VEV) via the quantum mechanical mechanism 
of dimensional transmutation. The dilaton-Higgs interactions then 
trigger the electroweak symmetry breaking and generate a sta-
ble hierarchy between the Higgs and dilaton VEVs. As a result of 
the spontaneous breaking of anomalous scale symmetry, the dila-
ton develops a mass at two loop level, which can be as small 
as ∼ 10−8 eV (for a dilaton VEV of the order the Planck scale, 
∼ M P ∼ 1019 GeV). In addition, the Higgs-dilaton potential displays 
a nearly flat direction.

The formalism of hidden scale invariance is rather generic and 
can be applied to other effective field theory models, with es-
sentially the same predictions regarding the light dilaton and the 
Higgs-dilaton potential [8]. Due to these generic features it is inter-
esting to investigate the cosmological phase transition in effective 
theories with hidden scale invariance. This is the purpose of the 
present paper.

Witten has pointed out a long time ago [9] that in the Stan-
dard Model with Coleman–Weinberg radiative electroweak sym-
metry breaking, the cosmological electroweak phase transition is 
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strongly first-order. The electroweak phase transition is aided by 
the QCD quark–antiquark condensate and hence occurs at low 
temperatures, namely around the temperature of the QCD chiral 
phase transition. See also the follow up work which also introduces 
the dilaton field [10]. Although these models are no longer phe-
nomenologically viable, one may consider their extensions which 
exhibit the same features for some range of parameters [11]. We 
will argue below, that within the framework of hidden scale in-
variance, the electroweak phase transition is necessarily triggered 
by QCD chiral phase transition and is completed at a low tem-
perature ∼ 130 MeV. We find that the Higgs field transitions to 
the electroweak vacuum via a second-order phase transition, while 
the chiral phase transition becomes first-order, similarly to one of 
the scenarios described in [11]. The later phase transition leads to 
the generation of stochastic gravitational waves in the ∼ 10−8 Hz
frequency range, which are potentially observable using pulsar tim-
ing technique, e.g. at the Square Kilometre Array (SKA) observatory 
[12]. In addition, production of primordial solar mass black holes 
are expected during that phase transition.

The paper is organised as follows. In the next section we de-
scribe the minimal Standard Model with hidden scale invariance. 
Calculation of the thermal effective potential and a subsequent 
analysis of the cosmological phase transition is given is section 3. 
The last section 4 is reserved for conclusions.

2. The Standard Model with hidden scale invariance

Let us consider the Standard Model as an effective low energy 
theory valid up to an energy scale, �, as introduced in [7]. In the 
Wilsonian approach, the ultraviolet cut-off � is a physical param-
eter that encapsulates physics (e.g. massive fields) which we are 
agnostic of. The Higgs potential defined at this ultraviolet scale 
reads:

V (�†�) = V 0(�) + λ(�)
[
�†� − v2

ew(�)
]2 + ..., (1)

where � is the electroweak doublet Higgs field, V 0 is a field-
independent constant (bare cosmological constant parameter) and 
the ellipsis denote all possible dimension > 4 (irrelevant), gauge 
invariant operators, 

(
�†�

)n
, n = 3, 4.... The other bare parameters 

include the dimensionless couplings λ(�) and a mass dimension 
parameter vew(�) namely the bare Higgs expectation value. In 
principle, this potential has an infinite number of nonrenormalis-
able operators and �-dependent parameters must fully encode the 
physics beyond the Standard Model. In practice, however, we usu-
ally deal with a truncated theory, which is valid in the low-energy 
domain only.

We assume now that a fundamental theory maintains spon-
taneously broken scale invariance, such that all mass parameters 
have a common origin. To make this symmetry manifest in our 
effective theory, we promote all mass parameters to a dynamical 
field χ , the dilaton, as follows:

� → �
χ

fχ
≡ αχ, v2

ew(�) → v2
ew(αχ)

f 2
χ

χ2 ≡ ξ(αχ)

2
χ2,

V 0(�) → V 0(αχ)

f 4
χ

χ4 ≡ ρ(αχ)

4
χ4 , (2)

where fχ is the dilaton decay constant. Then, Eq. (1) turns into 
the Higgs-dilaton potential,

V (�†�,χ) = λ(αχ)

[
�†� − ξ(αχ)

2
χ2

]2

+ ρ(αχ)

4
χ4 . (3)

This potential is manifestly scale invariant up to the quantum scale 
anomaly, which is engraved in the χ -dependence of dimensionless 

couplings.1 Indeed, the Taylor expansion around an arbitrary fixed 
scale μ reads:

λ(i)(αχ) = λ(i)(μ) + βλ(i) (μ) ln (αχ/μ)

+ β ′
λ(i) (μ) ln2 (αχ/μ) + ..., (4)

where λ(i) ≡ (λ, ξ, ρ) and

βλ(i) (μ) = ∂λ(i)

∂ lnχ

∣∣∣∣∣
αχ=μ

, (5)

is the renormalisation group (RG) β-functions for the respective 
coupling λ(i) defined at a scale μ, while β ′

λ(i) (μ) = ∂2λ(i)

∂(ln χ)2

∣∣∣
αχ=μ

, 

etc. For convenience, we fix the renormalisation scale at the cut-off 
scale �, which is defined through the dilaton VEV as 〈χ 〉 ≡ vχ , i.e. 
μ = � = αvχ . Note that while the lowest order contribution in 
β-functions is one-loop, i.e. ∼ O(h̄), n-th derivative of β is nth
order in the perturbative loop expansion, ∼O(h̄n).

The extremum condition dV
dχ

∣∣∣
�=〈�〉,χ=〈χ 〉 = 0 together with the 

phenomenological constraint on vacuum energy V (vew , vχ ) = 0, 
lead to the following relations:

ρ(�) = 0 , βρ(�) = 0 . (6)

One of the above relations can be used to define the dilaton 
VEV (dimensional transmutation) and another represents the tun-
ing of the cosmological constant. The second extremum condition 
dV
d�

∣∣∣
�=〈�〉,χ=〈χ 〉 = 0 simply sets the hierarchy of VEVs:

ξ(�) = v2
ew

v2
χ

. (7)

In the classical limit when all the quantum corrections are zero, 
i.e., βλ(i) = β ′

λ(i) = ... = 0, the above vacuum configuration repre-
sents a flat direction of the Higgs-dilaton potential (3). The ex-
istence of this flat direction is, of course, the direct consequence 
of the assumed classical scale invariance. In this approximation, 
the dilaton is the massless Goldstone boson of spontaneously bro-
ken scale invariance. The flat direction is lifted by quantum effects 
and, as we will see below, by thermal effects in the early universe. 
Note, however, that the dilaton develops a (running) mass in our 
scenario at two-loop level [7] (see also [14]),

m2
χ 	 β ′

ρ(�)

4ξ(�)
v2

ew , (8)

while the tree-level Higgs mass is given to a high accuracy by the 
standard formula: m2

h 	 2λ(�)v2
ew . Note that β ′

ρ ∝ ξ2 and hence 
the dilaton is a very light particle, mχ/mh ∼ √

ξ .
To verify whether the above scalar field configurations corre-

spond to a local minimum of the potential one must evaluate the 
running masses down to low energy scales. The relations in Eq. (6)
provide non-trivial constraints here. In Fig. 1, we have presented 
our analysis based on solutions of the relevant (one-loop) RG equa-
tions (see the appendix section in Ref. [7]). The shaded region in 
the � − mt plane corresponds to a positive dilaton mass squared 
(minimum of the potential) and the solid curve shows the cut-off 
scale � as a function of the top-quark mass mt for which the con-
ditions in Eq. (6) are satisfied. Hence, within the given approxima-

1 In this we differ substantially from the so-called quantum scale-invariant SM 
[13]. In their approach, the SM is extrapolated to an arbitrary high energy scale and 
regularized by invoking dilaton-dependent renormalization scale, μ = μ(χ).
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