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We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang–Mills 
theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with 
the current observational data.
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Cosmic inflation plays an important role in explaining observ-
able features of our universe, including its extreme flatness, as well 
as the origin of primordial curvature perturbations. The detailed 
predictions of inflation, however, depend on the potential V (φ) of 
the inflaton field φ. An important issue, therefore, is to understand 
what is the correct model of inflation and how it emerges from 
the underlying physics.

Recent observations by Planck [1] and BICEP2/Keck Array [2]
have started constraining simple models of inflation. In particu-
lar, arguably the simplest model of inflation V (φ) = m2φ2/2 [3]—
which gives the correct value for the scalar spectral index ns �
0.96—is now excluded at about the 3σ level because of the non-
observation of tensor modes. This raises the following questions. 
Does the model of inflation need to be significantly complicated? 
Is the agreement of ns of the quadratic potential with the data 
purely accidental?

In this letter, we argue that the answers to these questions may 
both be no. In particular, we argue that a simple inflationary model 
in which the inflaton φ couples to the gauge field of a pure Yang–
Mills theory

L = 1

32π2

φ

f
εμνρσ Tr Fμν Fρσ , (1)

may give the values of ns and the tensor-to-scalar ratio, r, in per-
fect agreement with the current observational data. Here, φ is a 
pseudo-Nambu–Goldstone boson—axion—of a shift symmetry φ →
φ + const., and f is the axion decay constant. For now we assume 
that the gauge group of the Yang–Mills theory is SU (N), but the 
model also works for other gauge groups; see later.
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Conventionally, the potential of the axion field as in Eq. (1) is 
assumed to take the form generated by non-perturbative instan-
tons

V (φ) = �4
[

1 − cos

(
φ

f

)]
, (2)

where � is the dynamical scale of the Yang–Mills theory. The re-
sulting inflation model is called natural inflation [4,5], which has 
been extensively studied in the literature. The potential of Eq. (2), 
however, is not favored by the current data, and it would soon be 
excluded at a higher confidence level if the bound on r improves 
with ns staying at the current value; see Fig. 1.

It is known since long ago, however, that the cosine potential 
in Eq. (2) is not correct in general, as argued by Witten [6,7] in the 
large N limit [8] with the ’t Hooft coupling λ ≡ g2N held fixed.1

In particular, while the physics is periodic in φ with the period of 
2π f (because θ ≡ φ/ f is the θ angle of the Yang–Mills theory), 
the multi-valued nature of the potential allows for the potential of 
φ in a single branch

V (φ) = N2�4 V
(

λφ

8π2N f

)
, (3)

not to respect the periodicity under φ → φ + 2π f . Here, the com-
bination

x ≡ λφ

8π2N f
, (4)

appearing in the argument of V(x) is determined by analyzing the 
large N limit. This allows for building axionic models of inflation 

1 See, e.g., Refs. [9–13] for related discussion in the context of inflation.
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Fig. 1. The predicted values of ns and r superimposed with the 68% and 95% CL 
BICEP2/KECK Array contours in Ref. [2]. The black dots represent the predictions of 
the quadratic potential V (φ) = m2φ2/2, with e-folding Ne = 50 and 60. The green 
lines are the predictions of the cosine potential, Eq. (2), and the red lines are those 
of the (holographic) pure natural inflation potential of Eq. (11). For the latter, we 
have varied F/MPl = 0.1–100, with F/MPl = 10, 5, 1 indicated by the red dots (from 
top to bottom). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

in which the range of the field excursion exceeds the decay con-
stant f [14–16].

The potential of Eq. (3) has an expansion of the form

V (φ) =
∞∑

n=1

b2n

(
φ

F

)2n

, (5)

where F ∝ f . The values of the coefficients b2n—more precisely 
their signs and double ratios—are important for how the predic-
tions for ns and r change as F is varied. If the cosine potential in 
Eq. (2) were valid, then we would obtain

sgn(b2n) = (−1)n−1, (6)

and

b6
b4

b4
b2

= 2

5
,

b8
b6

b6
b4

= 15

28
, · · · , (7)

which lead to the curves labeled as “cosine” in Fig. 1. The correct 
values of the double ratios, however, are expected to be different 
from these values. In fact, b2n ’s obtained by lattice gauge theory 
disfavor the cosine form of Eq. (2) and are rather consistent with 
those expected from large N expansion [17].

While b2n ’s may in principle be determined by lattice calcula-
tions, their errors are still large. Instead, we may infer the form 
of the potential by the following arguments. First, invariance un-
der the C P transformation φ → −φ implies that V(x) is a function 
of x2, where we have absorbed a possible bare θ parameter in the 
definition of φ. Second, V(x) is expected to flatten as the potential 
energy approaches the point of the deconfining phase transition 
with increasing |φ| (since the dynamics generating the potential 
will become weaker). Assuming that the potential is given by a 
simple power law, we thus expect V(x) ∼ 1/(x2)p (p > 0). This po-
tential is singular at x → 0, and a simple way to regulate it is to 
replace x2 with x2 + const. After setting the minimum of the po-
tential to be zero, these considerations give

V (x) = M4

[
1 − 1(

1 + cx2
)p

]
(p > 0), (8)

Fig. 2. The potential of pure natural inflation (in the holographic limit p = 3); 
Eq. (11). The potentials for other branches, which ensure the periodicity of physics 
under φ → φ + 2π f , are also depicted by dashed lines.

where M ∼ √
N�, and c > 0 is a parameter of order unity. Here, 

we have used the well-established fact that the coefficient of x2 is 
positive when V(x) is expanded around x = 0. We call the model 
of inflation in which the axionic inflaton potential is generated by 
a pure Yang–Mills theory (whose potential we expect to take the 
form of Eq. (8)) pure natural inflation.

As in the cosine potential, the potential of Eq. (8) gives 
sgn(b2n) = (−1)n−1. It, however, gives different values of the dou-
ble ratios

b6
b4

b4
b2

= 2(p + 2)

3(p + 1)
, · · · ,

b2n+4
b2n+2

b2n+2
b2n

= (n + 1)(p + n + 1)

(n + 2)(p + n)
, · · · . (9)

Therefore, predictions of this model are different from those of 
conventional natural inflation. (For example, by equating (b6/b4)/

(b4/b2) we obtain p = −7/2 < 0.) Here, we have assumed that the 
effect of a transition between different branches can be neglected, 
which we will argue to be the case.

The potential of Eq. (8) can be obtained by a holographic cal-
culation [10,18], which is applicable in the limit of large N and 
’t Hooft coupling. In this calculation, N D4-branes in type IIA string 
theory are considered, with the D4-branes wrapping a circle. Be-
low the Kaluza–Klein scale MKK for the circle, the theory reduces 
to a 4d (non-supersymmetric) pure SU (N) Yang–Mills theory, with 
the dynamical scale

� = MKK e− 24π2
11λ , (10)

where λ is the ’t Hooft coupling at MKK. Considering the backreac-
tion to the geometry of the constant Wilson line of the Ramond–
Ramond one-form, which represents the θ angle of the gauge the-
ory, the potential of the form of Eq. (8) is obtained with c = 1 and 
p = 3. Specifically, the potential of φ for a single branch is given 
by

V (φ) = M4

⎡
⎢⎣1 − 1(

1 + ( φ
F

)2
)3

⎤
⎥⎦ , (11)

where2

M4 = λN2

37π2
M4

KK, F = 8π2N

λ
f . (12)

The potentials for the other branches are obtained by replacing φ
with φ + 2πkf (k ∈ Z); see Fig. 2.

2 The ’t Hooft coupling (and the gauge coupling squared) defined in Ref. [10] is a 
factor of 2 smaller than λ (g2) here.
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