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We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates 
the pole mass of a heavy quark to the MS mass, with the exact series coefficients up to the four-
loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon 
divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, 
as well as the scale of the strong coupling and the MS mass. Including an estimate of the internal bottom 
and charm quark mass effect, we conclude that this uncertainty is around 110 MeV. We further estimate 
the additional contribution to the mass relation from the five-loop correction and beyond to be around 
300 MeV.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The top quark mass is a fundamental parameter of the Standard 
Model (SM). Due to its large size, it has non-negligible impact in 
the precision tests of the SM. After the discovery of the Higgs bo-
son and the measurement of its mass, the values of the W and 
top mass are strongly correlated, such that a precise determina-
tion of both parameters would lead to a SM test of unprecedented 
precision [1]. Indeed, there is presently some tension between the 
value of the top mass 177 ± 2.1 GeV fitted from electroweak data 
and from its direct measurement [1], for which the combination 
of the Tevatron and LHC data yields the 1.6 σ lower value of 
173.34 ± 0.27 ± 0.71 GeV [2]. The value of the top mass is also 
crucial to the issue of stability of the SM vacuum (see [3] for a re-
cent analysis). The Higgs quartic coupling decreases at high scales, 
eventually becoming negative. This evolution is very sensitive to 
the top mass value. For example, a top mass near 171 GeV would 
imply that the quartic coupling may vanish at the Planck scale, 
rather than turn negative.

The standard direct determination of the top mass at hadron 
colliders, being based upon observables that are related to the 
mass of the system comprising the top decay products, are quoted 
as measurements of the pole mass. On the other hand, it seems 
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more natural to use the MS mass in both precision electroweak 
observables and in vacuum stability studies. In [4] the relation 
between the MS and pole mass for a heavy quark (the “mass 
conversion formula” from now on) has been computed to the 
fourth order in the strong coupling αs . Assuming the value of 
163.643 GeV for the top-quark MS mass mt = mt(mt), and assum-
ing α(6)

s (mt) = 0.1088, we have [4]

mP = 163.643 + 7.557 + 1.617 + 0.501 + (0.195 ± 0.005) GeV
(1.1)

for the series expansion of the mass conversion formula. The last 
term from the fourth order correction is less than one half of the 
third order one.

It is also known that the mass conversion formula is affected by 
infrared (IR) renormalons [5–7]. This means that there are factori-
ally growing terms of infrared origin in the perturbative expansion, 
such that the expansion starts to diverge at some order. If the se-
ries is treated as an asymptotic expansion, the ambiguity in its 
resummation is of order of a typical hadronic scale. Because of 
this, it is often stated that the ultimate accuracy of top pole mass 
cannot be below a few hundred MeV. One of the goals of this work 
is to make this estimate more precise.

It is remarkable that the perturbative relation between the pole 
and MS mass of a heavy quark appears to be dominated by the 
leading infrared renormalon already in low orders [8,9]. This ob-
servation was used in previous work [10–12], and more recently 
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in [14,15] to estimate the unknown normalization of the lead-
ing IR renormalon, and mostly applied in the context of bottom 
physics. In the context of top physics, the importance of this issue 
was raised recently in [16]. The purpose of this work is to combine 
the newly available four-loop coefficient [4] in the mass conversion 
formula with the known structure of the first infrared renormalon 
singularity [7] to determine the normalization constant and dis-
cuss its impact on top physics. We also perform an analysis of the 
dependence on the number of colours and flavours, which is by 
itself of interest, and stability tests with respect to variations of 
the scale of the strong coupling and MS mass. This leads to an ex-
pression for the mass conversion factor including an estimate of 
the contributions beyond four loops, and an estimate of the irre-
ducible error.

2. Reminder

The renormalon divergence is a manifestation of the fact that 
the mass conversion formula, while infrared finite is sensitive to 
small loop momentum. In the case of the pole mass this sensitivity 
is particularly strong, namely linear, resulting in rapid divergence 
of the perturbative expansion, and an infrared sensitivity of order 
�QCD [5,6]. The ambiguity in defining the pole mass is therefore of 
similar size. This is not surprising as the pole mass of a quark is 
not an observable due to confinement and the difference with the 
physical heavy meson masses is also of order �QCD. Unlike other 
heavy quarks, the top quark decays on hadronic time scales, and 
thus the propagator pole position acquires an imaginary part. The 
renormalon divergence is not altered [17] by the fact that the top 
quark is unstable with a width larger than �QCD and hence does 
not form bound states. The finite width simplifies the perturba-
tive treatment of top quarks, since it provides a natural IR cut-off, 
and there exists no quantity for which the pole mass would ever 
be relevant. But the infrared sensitivity of the QCD corrections to 
the mass conversion factor, which causes the divergence, remains 
unaffected by the width.

Slightly more technically, the divergence arises from logarith-
mic enhancements of the loop integrand. Heuristically, this can be 
understood by noticing that the running coupling evaluated at the 
scale l of the loop momentum has the expansion

αs(l) = 1

b0 ln l2/�2
QCD

= αs(m)

1 − αs(m)b0 ln m2/l2

=
∞∑
1

αn
s (m)bn

0 lnn m2

l2
. (2.1)

The IR contribution to the last loop integration in the (n + 1)-loop 
order then takes the form

δm(n+1) ∝ αn+1
s (m)

m∫
dl bn

0 lnn m2

l2
= m (2b0)

n αn+1
s (m)n! . (2.2)

With this behaviour the series of mass corrections reaches a mini-
mal term of order

m (2b0)
nαn+1

s n! ≈ m αs n−n (
√

2πnn+1/2e−n)

≈ m

√
παs

b0
exp

(
− 1

2b0αs

)

≈
√

παs

b0
�QCD, (2.3)

when n ≈ 1/(2b0αs) and then diverges. Asymptotic expansions can 
sometimes be summed using the Borel transform. Given a power 
series

f (αs) =
∞∑

n=1

cnα
n
s , (2.4)

the corresponding Borel transform is defined by

B[ f ](t) =
∞∑

n=0

cn+1
tn

n! . (2.5)

The Borel integral

∞∫
0

dt e−t/αs B[ f ](t) (2.6)

has the same series expansion as f (αs) and provides the exact 
result under suitable conditions. However, for the case of (2.2), 
where cn+1 = (2b0)

nn!, the Borel integral

∞∫
0

dt e−t/αs
1

1 − 2b0t
(2.7)

cannot be performed because of the pole at t = 1/(2b0). We can 
introduce some prescription for handling the pole in the integral, 
as, for example, the principal value prescription. Whether or not 
this reconstructs the exact result, an ambiguity remains, quantified 
by the imaginary part of the integral when going above or below 
the singular point. A commonly used procedure is to define this 
ambiguity to be equal to the imaginary part of the integral divided 
by Pi (see, e.g., [18], section 5.2). For (2.7), this yields

�QCD/(2b0) . (2.8)

In the range of αs values considered in this paper, the ambiguity 
is close to the size of the smallest term in (2.3).1

It can be shown [7] that while the precise asymptotic behaviour 
of the mass conversion formula differs from the simple ansatz em-
ployed in this section for illustration, as discussed below, the am-
biguity is exactly proportional to �QCD, which evaluates to about 
250 MeV in the MS scheme. In the remainder of this work, we aim 
to quantify the proportionality factor.

3. The leading pole mass renormalon

We write the perturbative expansion of the mass conversion 
formula as

mP = m(μm)

(
1 +

∞∑
n=1

cn(μ,μm,m(μm))αn
s (μ)

)
. (3.1)

Here αs(μ) is the MS coupling in the nl light flavours theory, and 
m(μm) stands for the MS mass evaluated at the scale μm . (In the 
following we will consider different scale choices for the heavy 
quark mass and the strong coupling. We also use m to denote the 
MS mass evaluated self-consistently at a scale equal to the mass 
itself, i.e.

m = m(m). (3.2)

1 Note, however, the different parametric dependence on αs of (2.3) and (2.8). The 
correct dependence is that of (2.8), for the following reason: The typical width of 
the region where the minimal term is attained grows parametrically as 

√
1/(2b0αs). 

The accuracy of an asymptotic series is better estimated by the minimal term times 
the factor accounting for the number of terms in this region, which makes (2.3)
parametrically consistent with (2.8). Numerically, this factor turns out to be of 
order one for the applications considered in this paper, as will be confirmed in sec-
tion 4 below. In case of doubt, the estimate from the ambiguity of the Borel integral 
should be the preferred choice.
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