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We study the electrodynamics of the chiral medium with electric and magnetic charges using the 
effective Maxwell–Chern–Simons theory extended to include the magnetic current. The exchange of 
helicity between the chiral medium and the magnetic field, known as the inverse cascade, is controlled by 
the chiral anomaly equation. In the presence of the magnetic current, the magnetic helicity is dissipated, 
so that the inverse cascade stops when the magnetic helicity vanishes while the chiral conductivity 
reaches a non-vanishing stationary value satisfying σ 2

χ < 4σeσm , where σe , σm and σχ are the electric, 
magnetic and chiral conductivities respectively. We argue that this state is superconducting and exhibits 
the Meissner effect for both electric and magnetic fields. Moreover, this state is stable with respect to 
small magnetic helicity fluctuations; the magnetic helicity becomes unstable only when the inequality 
mentioned above is violated.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Classical electromagnetic field in a medium with chiral anomaly 
is described by a system of Maxwell equations and the chi-
ral anomaly equation [1,2] known as the Maxwell–Chern–Simons 
(MCS) theory [3–6]. The chiral anomaly equation controls the ex-
change of helicity between the field and medium such that the 
total helicity is conserved. The resulting non-trivial evolution of 
the magnetic field topology has been a subject of recent inter-
est [7–18] motivated by phenomenological applications in nuclear 
physics, condensed matter physics and cosmology [19].

A distinctive feature of the MCS theory is the emergence of the 
soft magnetic field modes exponentially growing in time [7,8,14,15,
19–28]. These unstable modes transfer helicity from the medium 
to the field in a process known as the inverse cascade [8,29]. Even-
tually, however, the helicity conservation puts a cap on the inverse 
cascade [30,31].

It has been argued in [32–36] that magnetic monopoles play 
an important role in quark–gluon plasma dynamics. Magnetic 
monopoles also often appear in cosmological models [37] and even 
in condensed matter physics [38]. This motivates us to consider the 
MCS theory with dynamical magnetic monopoles (MCSm). That the 
magnetic monopoles are expected to have non-trivial effects on the 
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magnetic field can be seen from the fact that the dual transforma-
tion generates in the Lagrangian the same C P -odd term as chiral 
anomaly. In particular, the magnetic current, while being energy 
non-dissipative, causes dissipation of the total helicity. The main 
goal of this paper is to uncover the main features of the chiral 
magnetic dynamics with magnetic monopoles.

The paper is organized as follows. In Sec. 2 we formulate the 
equations of the MCSm theory and analyze their main properties. 
Our main assumption is the linear medium response that is char-
acterized by the electric and magnetic conductivities σe and σm . 
We observe the emergence of the superconducting phase when 
σ 2

χ < 4σeσm and formulate the corresponding London equations 
(12), (13) in Sec. 2.2. In Sec. 2.3 we analyze the late-time dynamics 
of the MCSm system, in particular, its evolution towards a station-
ary state. We argue that the magnetic helicity must exponentially 
decay due to the helicity dissipating magnetic current. The chiral 
conductivity σχ also decays owing to the inverse cascade as men-
tioned above. However, in the presence of the magnetic current, 
the inverse cascade may be terminated before the chiral conduc-
tivity turns zero. Therefore, the chiral conductivity approaches a 
finite stationary value σ∞ while the magnetic helicity is com-
pletely dissipated. In Sec. 3 we investigate the dispersion relation 
of the magnetic field modes and point out the conditions under 
which the magnetic field (and magnetic helicity) is unstable. In 
our context, the term “instability” means that a small fluctuation 
of the field triggers its exponential growth, even though eventually 
it decays as a result of the magnetic helicity non-conservation. We 

https://doi.org/10.1016/j.physletb.2017.11.063
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://doi.org/10.1016/j.physletb.2017.11.063
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:yli48@wm.edu
https://doi.org/10.1016/j.physletb.2017.11.063
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2017.11.063&domain=pdf


Y. Li, K. Tuchin / Physics Letters B 776 (2018) 270–277 271

show that the stability condition coincides with the condition for 
the existence of the superconductivity. In order to develop a clearer 
understanding of the time evolution of the magnetic field and the 
chiral conductivity, we employ in Sec. 4 the Fastest Growing State 
(FGS) model [30] which assumes that the magnetic helicity at later 
times is driven by a mode with the exponentially largest growth 
rate. Using this model we perform in Sec. 5 a detailed investiga-
tion of the time-evolution of the MCSm theory. We argue that after 
undergoing an inverse cascade the system settles to the supercon-
ducting phase. This is the main result of our paper. We conclude 
with a discussion in Sec. 6.

2. Maxwell–Chern–Simons theory with magnetic monopoles

2.1. Maxwell and the chiral anomaly equations

A plasma of electric and magnetic charges with chiral anomaly 
is governed by the following generalization of the Maxwell equa-
tions [3–6]:

∇ · B = 0 , (1)

∇ · E = 0 , (2)

−∇ × E = ∂t B + jm , (3)

∇ × B = ∂t E + je + σχ B , (4)

where jm is the magnetic current density and σχ is assumed to 
depend only on time. We neglected the electric and magnetic po-
larization of the plasma, which is a small effect for good conduc-
tors and consider the plasma to be electrically and magnetically 
neutral. Assuming the linear response je = σe E , jm = σm B with 
constant electric and magnetic conductivities we can derive, using 
(1)–(4), an equation for the magnetic field1

−∇2 B + ∂2
t B = −(σe + σm)∂t B − σeσm B + σχ(t)∇ × B . (5)

In view of (1) we can introduce the vector potential A as B =
∇ × A. Since the Bianchi identity is violated in the presence of 
the magnetic current, the relationship between the electric field 
and the vector potential is modified as compared to the Maxwell 
theory. One can check that

E = −∂t A − σm A , (6)

satisfies the modified Faraday’s law (3) in the Coulomb gauge 
∇ · A = 0. We note that the vector potential A obeys the same 
equation (5) as the magnetic field.

The relationship (6) between the electric field and the vec-
tor potential is not unique. One can add on its right-hand-side 
a gradient of any scalar function φ. The choice of φ is dictated 
by the requirement of the gauge-invariance of (6). Equations such 
as (6) appear in the theory of the superconductivity and indi-
cate the necessity to introduce the magnetic monopole condensate. 
The condensate contributes to the right-hand-side of (6) a term 
proportional to the gradient of its phase φ which restores the 
gauge invariance. The term −σm A in (6) and the term proportional 
to ∇φ make up the supercurrent. Not surprisingly, the supercur-
rent induces the Meissner effect discussed in the next sub-section. 
Throughout the paper we assume the gauge condition φ = 0 (the 
unitary gauge).

1 Magnetic field is supposed to be not very strong, so that the Larmor radius is 
much larger than the Debye radius rD , which guarantees that the kinetic coefficients 
do not depend on B . For relativistic plasmas at temperature T this amounts to eB �
rD T .

The time-evolution of the chiral conductivity is governed by the 
chiral anomaly equation. At high temperatures it can be written as 
[9,30]

∂tσχ = c2
A/(χ V )

∫
E · B d3x , (7)

where c A = Nc
∑

f q2
f e2/(2π2) is the anomaly coefficient, V is the 

volume of the system and χ is the susceptibility that does not 
depend on time [30,39]. Eq. (7) can be written in terms of the 
magnetic helicity defined as

Hem =
∫

A · B d3x . (8)

Denoting β = c2
A/(V χ) yields

β−1∂tσχ = −∂tHem − 2σmHem . (9)

Evidently, the total helicity Htot = β−1σχ + Hem is no longer a 
conserved quantity at finite σm [30]. While the magnetic current 
is energy non-dissipative, it does dissipate the magnetic helicity.

2.2. Meissner effect

That the magnetic current does not dissipate energy can also be 
seen from the fact that under time-reversal T the current density 
and magnetic field change signs, implying that the magnetic con-
ductivity σm is even under T . The same argument indicates that 
the chiral conductivity σχ is also even under T , which, as recently 
argued by Kharzeev, implies the existence of the “chiral magnetic 
superconductivity” [40].

To see how the supercurrent induces the Meissner effect, it is 
convenient to introduce the “normal” and “super” components of 
the electric field as

En = −∂t A , E s = −σm A . (10)

We denote the electric currents induced by each component as

jn = σe En , js = σe E s = −σeσm A . (11)

It can be checked that both currents satisfy the continuity equa-
tion: ∇ · jn = ∇ · js = 0. It is straightforward to see that the super 
current js satisfies the London equations:

∇ × js = −σeσm B, (12)

∂t js = +σeσm En, (13)

which indicates that js is indeed a superconducting current. The 
MCSm equations (1)–(4) can be rewritten for the pair of fields B , 
En as

∇ · En = 0, (14)

∇ · B = 0, (15)

−∇ × En = ∂t B, (16)

∇ × B = ∂t En + σe + σm

σe
jn + js + σχ B. (17)

In the stationary limit jn = 0, En = 0 (12) and (17) yield

∇2 B = σeσm B − σχ∇ × B , (18)

which can also be seen directly from (5). The super component 
of the electric field satisfies the same equation. Indeed, taking the 
Laplacian of the second equation in (10) and using (17) we obtain

∇2 E s = σeσm E s − σχ∇ × E s . (19)
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