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High-energy muons can travel large thicknesses of matter. For underground neutrino and cosmic ray 
detectors the energy loss of muons has to be known accurately for simulations. In this article the next-
to-leading order correction to the average energy loss of muons through bremsstrahlung is calculated 
using a modified Weizsäcker–Williams method. An analytical parametrisation of the numerical results is 
given.
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1. Introduction

The muon bremsstrahlung cross section has been studied ex-
tensively for many years [1–5]. Together with the production of 
electron–positron pairs [6–9] and the inelastic nuclear interaction 
[10–12] it describes the dominant contribution to the energy loss 
of high-energy muons.

Muons with energies of tens to hundreds of TeV can travel dis-
tances of the order of several kilometers. Therefore it is necessary 
to know the average energy loss per unit length

−
〈

dE

dx

〉
= N

∫
E v

dσ

dv
dv (1)

accurately. Here v = (E − E ′)/E is the relative energy loss per in-
teraction, and N is the number density of target atoms. Previous 
calculations took into account the modification of the Coulomb in-
teraction with the nucleus by elastic and inelastic nuclear form 
factors, the contribution of atomic electrons as target for muon 
bremsstrahlung and the inelastic interaction with the target nu-
cleus. This article discusses the correction of the energy loss 
through virtual and real radiative corrections. Since this correction 
is small compared to the main contribution, we restrict our treat-
ment of the nucleus to elastic atomic and nuclear form factors.
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The energy loss is of importance for underground detectors for 
two reasons: on the one hand, the energy loss is needed to predict 
the spectrum of muons that will reach the detector; on the other 
hand the energy lost by a muon inside the detector on a given 
length is used to reconstruct the energy of the radiating particle. 
The energy reconstruction is further complicated by its sensitivity 
to the distribution of energy losses and their correlation to the 
energy of the muon. Especially rare large stochastic energy losses 
enlarge the variance of the energy loss per unit length. As a first 
step to revisit this problem, in the present article, the muon energy 
dependent average energy loss per length is calculated.

In the calculation of radiative corrections in QED processes with 
virtual photons give rise to logarithmically divergent integrals; to 
obtain a finite result, it is necessary to add the cross section for 
the emission of an additional photon with energy ω < ωmin which 
cancels this divergence. Usually ωmin is identified with the fi-
nite energy resolution of the detector and assumed to be small 
compared to the mass of the radiating particle, such that the ap-
proximation of classical currents can be used. The contribution of 
harder photons indistinguishable from a single photon is then eval-
uated numerically according to the conditions of the experiment 
(see e.g. [13]). In the problem of muon propagation, however, the 
particle may traverse several kilometers of material before the en-
ergy losses can be seen by the detector. Therefore the cross section 
has to be integrated over all kinematically allowed states of the ad-
ditional photon. So the energy loss depends only on the primary 
energy of the muon.
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Fig. 1. (a) Symbolic Diagram of interaction of a muon with an atom. (b) Equivalent 
Diagram in the Weizsäcker–Williams method. The shaded blob denotes the internal 
part of the diagram. X denotes particles created in the collision.

Unless stated otherwise, all equations are presented in a system 
of units where h̄ = c = mμ = 1.

2. Method

The calculation reported here is based on the Weizsäcker–
Williams method [14,15], which approximates the effect of a nu-
cleus by a spectrum of equivalent photons. This method allows 
to express the bremsstrahlung cross section through the Compton 
cross section convolved with the equivalent photon flux. Using the 
radiative corrections to the Compton effect in [16], the radiative 
corrections to the bremsstrahlung spectrum were first calculated 
in the soft-photon approximation in [17] for an unscreened or to-
tally screened nucleus.

2.1. Conventional Weizsäcker–Williams method

Considering the collision of a fast muon with an atom, we intro-
duce two systems of reference: the laboratory system K Z in which 
the atom is at rest and the muon has a Lorentz factor γ � 1, and 
the system Kμ in which the muon is at rest and the atom has a 
Lorentz factor of γ . The interaction of the muon with the atom can 
be described symbolically by the diagram in Fig. 1(a). The shaded 
blob denotes the internal part of the diagram, the double line X
denotes particles created in the collision. Diagram Fig. 1(b) de-
scribes a similar process due to collision of a real photon with a 
muon. We consider two cases here:

1. X = γ . In this case (a) is bremsstrahlung and we assume that 
the blob also contains radiative corrections; (b) is Compton 
scattering with radiative corrections.

2. X = 2γ . In this case (a) is double bremsstrahlung and (b) is 
double Compton scattering.

In the Weizsäcker–Williams method the field of the atom in 
Kμ is replaced by a flux of equivalent photons with the spectrum 
n(ω) dω. This allows to relate the differential cross sections of the 
processes (a) and (b) by the relation

dσa = dσbn(ω)dω, (2)

and for the total cross section∫
dσa =

∫
dσbn(ω)dω. (3)

It is convenient to calculate the cross section σb in the frame Kμ . 
Since the cross section is Lorentz-invariant, the transition from Kμ

to K Z is trivial.
In K Z the average energy loss per unit length caused by the 

process (a) is given by

−
〈

dE

dx

〉
= N E�, � = 1

E

∫
(E − E ′)dσa, (4)

where E (E ′) is the initial (final) muon energy, N is the number 
density of target atoms per unit volume. The quantity � can be 
rewritten in a relativistically invariant form as

� = 1

(up)

∫
((up) − (up′))dσa, (5)

where u is the 4-velocity of the atom and p, p′ are the initial and 
final 4-momenta of the muon respectively, (up) = u0 p0 − up is the 
scalar product of 4-vectors. Using (2) it is possible to rewrite this 
as

� =
∫

(up) − (up′)
(up)

dσbn(ω)dω. (6)

In this equation we will calculate the integrand in the Kμ frame. 
For Compton scattering the energy-momentum conservation gives 
(u, p − p′) = (u, q′ − q), where q (q′) is the initial (final) photon 
4-momentum. In the frame Kμ we have (uq)/γ = ω(1 − β) ≈
ω/(2γ 2), where ω is the initial photon energy. Since ω ∼ γ , the 
ratio (uq)/γ ∼ 1/γ is negligible. The other term is

(uq′)
γ

= ω′(1 − β cos θ) ≈ 1

2
ω′(θ2 + 1/γ 2). (7)

In Compton scattering θ � 1/
√

γ [18] and the second term in 
parentheses is negligible. Therefore we obtain for the first case

1 − (up′)
(up)

≈ 1 − ω′

ω
. (8)

Similarly for double Compton scattering we have

1 − (up′)
(up)

≈ ω1(1 − cos θ1) + ω2(1 − cos θ2), (9)

where ω1,2, θ1,2 are the energies and angles of the final photons.

2.2. Modified Weizsäcker–Williams method

For a point-like nucleus, the pseudophoton flux in the rest 
frame of the muon is given by [18]

n(ω)dω = 2

π
Z 2α

dω

ω
ln

γ

ω
(10)

where γ is the Lorentz factor of the incident particle in the labo-
ratory frame, or, equivalently the Lorentz factor of the nucleus in 
the rest frame of the muon.

For muons, it is necessary to take into account the extended 
nucleus and the screening of the nucleus by atomic electrons, 
because the characteristic momentum transfer of q ∼ mμ is com-
parable to the inverse radius of the nucleus and the minimum 
momentum transfer δ ∼ m2

μ/E is comparable to or smaller than 
the inverse radius of the atom [3].

For an atom with nuclear and atomic formfactors Fn(q2), Fa(q2)

we obtain

n(ω)dω = αZ 2 dω

πω

∞∫

ω2/γ 2

τ − ω2/γ 2

τ 2 (Fn(τ ) − Fa(τ ))2 dτ . (11)

In this work the charge distribution of the nucleus and of the 
atomic electrons are described by a Gaussian and an exponential 
distribution, respectively, resulting in the form factors

Fn(q2) = exp

[
−q2 R2

n

6

]
, (12)

Fa(q
2) =

[
1 + q2 R2

a

12

]−2

(13)

with R the Rms-radius of the charge distribution. The atomic and 
nuclear radius can be parametrized for light and medium nuclei as 
[19]
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