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The possible neutron–antineutron oscillation is described by an effective quadratic Lagrangian analogous 
to the BCS theory. It is shown that the conventional equal-time anti-commutation relations of the 
neutron variable n(t, �x) are modified by the baryon number violating terms. This is established by the 
Bjorken–Johnson–Low prescription and also by the canonical quantization combined with equations of 
motion. This novel canonical behavior can give rise to an important physical effect, which is illustrated 
by analyzing the Lagrangian that violates the baryon number but gives rise to the degenerate effective 
Majorana fermions and thus no neutron–antineutron oscillation. Technically, this model is neatly treated 
using a relativistic analogue of the Bogoliubov transformation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The possible neutron oscillation is analyzed by the quadratic 
effective Hermitian Lagrangian with general �B = 2 terms added 
[1–12],

L0 = n(x)iγ μ∂μn(x) − mn(x)n(x)

− 1

2
ε1[eiαnT (x)Cn(x) + e−iαn(x)CnT (x)]

− 1

2
ε5[nT (x)Cγ5n(x) − n(x)Cγ5nT (x)], (1)

where m, ε1, ε5 and α are real parameters. The most general 
quadratic Hermitian Lagrangian is written in the form (1) using 
the phase freedom of n(x) → n(x) = eiβn′(x); under this change 
of naming the field, the physical quantities in (1) such as mass 
eigenvalues are obviously invariant. But C (and thus CP) transfor-
mation rules of the solution of the Lagrangian (1) are modified. In 
the present paper, we adopt the above phase convention which is 
different from the one used in [13].

The first �B = 2 term with real ε1 breaks the γ 0-parity which 
is defined by
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n(t, �x) → γ 0n(t,−�x), nc(t, �x) → −γ 0nc(t,−�x) (2)

with nc(t, �x) ≡ Cn(t, �x)T
, while the second term with real ε5 pre-

serves γ 0-parity. In contrast, the first term with real ε1 preserves 
iγ 0-parity which is defined by

n(t, �x) → iγ 0n(t,−�x), nc(t, �x) → iγ 0nc(t,−�x), (3)

while the second term with real ε5 breaks iγ 0-parity. The 
iγ 0-parity is natural in the analysis of the Majorana fermion since 
it preserves the reality of the field in the Majorana representation. 
In the discussion of discrete symmetries of the general effective 
Lagrangian (1), one is bound to adopt the iγ 0-parity, and the CP 
defined in terms of iγ 0-parity is broken only when α �= 0 in (1). 
Our notational conventions follow [14], in particular, C = iγ 2γ 0.

The model (1) has been studied by various authors in the past 
[1–12]. We have given an exact solution of (1) with α �= 0 and 
showed that the neutron oscillation cannot detect the effect of 
CP violation, although the absolute rate of the oscillation is influ-
enced by α �= 0 [13]. We have also shown that the choice ε1 = 0
gives rise to the degenerate effective Majorana masses and thus 
no oscillation. Nevertheless, physically the effect of γ0-parity pre-
serving �B = 2 terms is not negligible [13], and it may appear 
in the instability of nuclei. This effect is related to the interest-
ing novel anti-commutation relations of neutron variables such as 
{n(t, �x), n(t, �y)} = 0 but {ṅ(t, �x), n(t, �y)} �= 0, which is analyzed in 
detail in the present paper. This effect is specific to the baryon 
number violating theory.
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For example, in a model analogous to the Nambu–Jona-Lasinio 
model [15] such as

L = n(x)iγ μ∂μn(x) − mn(x)n(x)

− λn(x)(1 + γ5)n(x)n(x)(1 − γ5)n(x), (4)

where the baryon number is strictly conserved and thus

〈T 	n(x)n(y)〉 = 0, (5)

the above mentioned novel behavior of the canonical anti-commu-
tation relations does not appear. Eq. (5) is a consequence of the 
Ward–Takahashi identity for the baryon number conservation in 
(4). Alternatively, one may define the baryon number operator 
B = ∫

d3xn̄(x)γ 0n(x), which is time-independent d
dt B = 0, and 

exp[−iαB]n(x) exp[iαB] = eiαn(x). The baryon number conserving 
vacuum implies exp[iαB]|0〉 = |0〉, and thus

〈0|T 	n(x)n(y)|0〉 = 〈0|exp[−iαB]T 	n(x)exp[iαB]
× exp[−iαB]n(y)exp[iαB]|0〉
= e2iα〈0|T 	n(x)n(y)|0〉, (6)

for arbitrary α. We thus conclude (5).

2. Degenerate Majorana masses

We have shown that the effective Lagrangian (1) with ε1 = 0, 
i.e.

L = n(x)iγ μ∂μn(x) − mn(x)n(x)

− 1

2
ε5[nT (x)Cγ5n(x) − n(x)Cγ5nT (x)], (7)

which is invariant under the “γ 0-parity”, gives rise to the degen-
erate Majorana fermions [13], even in a more general context, as 
is discussed later. The degeneracy of Majorana masses implies the 
absence of the conventional neutron oscillation despite the pres-
ence of the ε5-term with �B = 2.

We use the Lagrangian in (7) to analyze the novel anti-
commutation relations. To solve (7), we apply an analogue of 
Bogoliubov transformation, (n, nc) → (N, Nc), defined as [13](

N(x)
Nc(x)

)
=

(
cosφ n(x) − γ5 sinφ nc(x)
cosφ nc(x) + γ5 sinφ n(x)

)
, (8)

with

sin 2φ = ε5/
√

m2 + (ε5)2. (9)

One can confirm the classical consistency condition Nc = C N
T
(x)

using the expressions of the right-hand side of (8). One can also 
confirm

L = 1

2
{N̄i/∂N + N̄c i/∂Nc}

= 1

2
{n̄i/∂n + n̄c i/∂nc}. (10)

We can then show that the anticommutators are preserved, i.e.,

{N(t, �x), Nc(t, �y)} = {n(t, �x),nc(t, �y)},
{Nα(t, �x), Nβ(t, �y)} = {Nc

α(t, �x), Nc
β(t, �y)} = 0, (11)

and thus the condition of a canonical transformation required for 
the Bogoliubov transformation is satisfied. This condition of the 
canonical transformation is valid irrespective of the mass values of 

n and N . A transformation analogous to (8) has been successfully 
used in the analysis of neutrino masses in the seesaw mechanism 
[16,17].

After the Bogoliubov transformation, (7) becomes

L = 1

2

[
N(x) (i/∂ − M) N(x) + Nc(x) (i/∂ − M) Nc(x)

]

= 1

2

[
ψ+(x) (i/∂ − M)ψ+(x) + ψ−(x) (i/∂ − M)ψ−(x)

]
, (12)

where the Majorana fermions are defined by

ψ±(x) = 1√
2
[N(x) ± Nc(x)] (13)

which satisfy

ψc+(x) = ψ+(x), ψc−(x) = −ψ−(x). (14)

The mass parameter is defined by

M ≡
√

m2 + (ε5)2. (15)

This implies that the Bogoliubov transformation maps the original 
theory to a theory of quasiparticles described by the field N(x), 
characterized by a new mass M (ε5 corresponds to the energy 
gap). The Bogoliubov transformation maps a linear combination of 
a Dirac fermion and its charge conjugate to another Dirac fermion 
and its charge conjugate, and thus the Fock vacuum is mapped to 
a new vacuum defined by L at t = 0 (see, for example, [17]). It is 
important that the Bogoliubov transformation (8) preserves the CP 
symmetry, although it does not preserve the transformation prop-
erties under iγ 0-parity and C separately.

The solution of the starting Lagrangian (7) is written as,(
n(x)
nc(x)

)
=

(
cosφN(x) + γ5 sinφNc(x)
cosφNc(x) − γ5 sinφN(x)

)
, (16)

with sin 2φ defined in (9). The solution can also be expressed in 
terms of Majorana fermions defined in (13) using

N(x) = [ψ+(x) + ψ−(x)]/√2

Nc(x) = [ψ+(x) − ψ−(x)]/√2. (17)

When one generates the neutron experimentally, one obtains 
the field expressed as

n(x) = cosφN(x) + γ5 sinφNc(x)

= 1√
2
{cosφ[ψ+(x) + ψ−(x)] + γ5 sinφ[ψ+(x) − ψ−(x)]},

nc(x) = cosφNc(x) − γ5 sinφN(x)

= 1√
2
{cosφ[ψ+(x) − ψ−(x)] − γ5 sinφ[ψ+(x) + ψ−(x)]},

(18)

but no oscillation in the conventional sense

n(x) → nc(x) → n(x) → ...., (19)

takes place due to the mass degeneracy of the Majorana fermions 
ψ±(x). Note that the neutron–antineutron oscillation n(x) → nc(x)
occurs due to the mass differences of the two Majorana particles 
appearing in the expressions of n(x) and nc(x). It may thus seem 
that no physical effects of the baryon number violation such as the 
decay originating from n(x) into two distinct final states appear.

However, n(x) and nc(x) are not orthogonal, in the sense

〈T 	nc(x)n̄(y)〉 =
∫

d4 p

(2π)4

(−i)γ5M sin 2φ

p2 − M2 + iε
e−ip(x−y), (20)
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